FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

BACHELOR THESIS

Jan Hrach

Frequency Spectrum Monitoring System

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: Mgr. David Klusacek, Ph.D.
Study programme: Informatics

Study branch: General Computer Science

Prague 2016

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright

Act.

In date signature of the author

I would like to thank to my supervisor for the great signal processing classes
showing us marvels of mathematics and to members of brmlab, the Prague hack-
erspace, for collaboration on various radio and other projects and providing valu-
able feedback on software presented in this thesis.

11

Title: Frequency Spectrum Monitoring System
Author: Jan Hrach
Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. David Klusacek, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: We have created several programs to be used in the field of Software
Defined Radio technology: (i) A channelizer, a tool that splits wideband signal
into multiple narrowband channels that can be further processed, (ii) A SDR
client, an interactive GUI tool that allows exploration of signals, (iii) A scanner.
Our channelizer is several times faster than a popular GnuRadio implementation
and our SDR software features a network-transparent architecture with one server
and multiple concurrent clients.

Keywords: SDR channelizer filterbank DSP GnuRadio

111

Contents

2 The spectrum channelizer|

2.1 _The channel selectorl

[2.2 Computing multiple channels at once|

2.3 Oversampling|

[2.4 FCL: the implementation|.

4 . oe

[3 Kukuruku: a client-server SDR application|

[3.1 Program architecture|

[3.1.2 Protocol description|

[3.1.3 The libclient library|

[3.1.4 The kukuruku-gui client|

[3.2 User guide| . .

[4.1 Program architecturel

[4.2 Configuration|
/ Usage|

[4.4 Sorting the signals] L.

Conclusion|

[Bibliography|

[List of Figures|

I FAD] Ations

[Attachments|

27

28

29

30

Introduction

The SDR concept enables us to create receivers and transmitters of various signals
using single universal hardware peripherial by simply replacing the control soft-
ware. Thanks to the falling prices of such universal hardware devices, wide avail-
ability of powerful computers and inherent ability to share the software among
developers, we have seen a large boom of SDR usage in recent years.

This work aims to create tools that aid the development of SDR applications
and can be used for learning basic principles of the SDR technology and radio
reconnaissance.

In Chapter [I| we give general introduction to the SDR technology, motivation
and available hardware. In Chapters 1.3 and 1.4 we describe two popular pro-
grams that can be used with SDR — GnuRadio and GQRX — with emphasis on
identifying their advantages and drawbacks.

In Chapters 2—4 we present three programs we have developed to address the
identified drawbacks.

e Chapter |2 describes a spectrum channelizer, a tool that splits wideband
signal into several narrowband channels that can be further processed.

e Chapter |3| describes an interactive SDR client, a graphical program where
the user can see available transmitters and decide to receive some of them.

e Chapter (4] describes a scanner, a program tuning to various frequencies,
looking for new signals and saving them for later analysis.

1. The Software Defined Radio

1.1 Motivation

The “classical” radio implements the signal processing and demodulation in hard-
ware using features like tuned filters, mixers, etc. This makes any reconfiguration
difficult, usually requiring major changes in the physical circuitry. Under the term
“software defined radio” (from now on occasionally only SDR) we understand the
approach of sampling the received signal by an analog to digital converter (ADC)
as early as possible and then implementing all the signal processing on a general
purpose computer. Similar approach also applies to transmission, when the signal
is generated in software and then transmitted using a digital to analog converter
(DAC). By general purpose computer we also mean signal processing accelerated
by reconfigurable hardware like, for example, a field-programmable gate array.
The advantages of this approach include for example:

e Single hardware can be reused for the reception of various modulations and
protocols by only changing the software.

e Usual software development tools like debuggers and version control systems
apply.

e Both the software and the sampled signals can be stored and distributed
over the computer networks.

The “ideal” SDR would consist of an antenna, an amplifier, a low-pass filter
and an ADC. However, to meet the Nyquist criterion, one would need an ADC
with a sample rate of two times the received signal frequency (and some safety
margin for the low-pass filter transition band). This is infeasible for signals in
the VHF and higher bands.

We have two other options here. Either to use a bandpass filter, deliberately
violating the Nyquist criterion and sample the alias, or mix the signal with local
oscillator to convert it to some lower intermediate frequency. We use the former
approach when discussing a channel selector in Chapter 2. Most general-purpose
SDRs (for example rtl-sdr, Airspy and bladeRF) use the latter approach.

1.2 SDR hardware

Some popular commercially available receivers are summarized in Table [L.1]

Device Samplerate Resolution Frequency range Cost

rtl-sdr 2.4 MHz 8b 24-1800 MHz $8
Airspy 10 MHz 12 b 24-1800 MHz $220
bladeRF¢ 40 MHz 12 b 300-3800 MHz $420

Notes: ¢ Can transmit and has user-configurable FPGA

Table 1.1: Popular SDR hardware

1.3 GnuRadio

[GnuRadio| is a software library that provides signal processing primitives in
so-called blocks. Each blocks does one operation with the signal, for example
multiplication with a constant, Fourier transform or FIR filtering, and blocks can
be connected into flowgraphs.

Unfortunately, the architecture does not scale well when running many blocks
in parallel. We hit this bottleneck with GnuRadio PFB channelizer and decided
to implement our own channelizer, which we discuss in Chapter 2]

1.4 Gqrx

|[Garx]| is a graphical software built upon the GnuRadio library. It is to be run
on a computer which has a SDR hardware connected. It prompts the user for a
frequency, tunes the SDR to that frequency and then shows the power spectrum
of the sampled signal. The user can choose to demodulate the signal using one
of several demodulators; as of version 2.5, FM, AM, sideband and AFSK-1200
(digital data used in APRS networks) are available.

We have been using Gqrx as the main debugging tool during development
of various radio projects and we have created a list of features that we consider
missing.

Network transparency. The only way to operate a remote SDR in Gqrx is
to send all the data from the SDR over the network. This usually means tens or
even hundreds of megabits per second. It works over LAN, but cannot be used
over the Internet.

Our approach is to process the data remotely and send to the client only what
is really needed — spectrum measurements and filtered narrowband channels.
With this, the required bandwidth can be only few Mb/s, depending on the
number and bandwidth of the channels.

Multiple demodulators running at once. SDRs can sample the spectrum
many megahertz wide (see Table , therefore several signals of interest may be
received simultaneously. Why one cannot add multiple demodulators in Gqrx?

History browsing. A short burst of signal can appear and the user might
be interested in it. However, it disappears before the user can tune to it.

Current computers have many gigabytes of memory. It is therefore no problem
to store several minutes of everything that the has SDR received in a ring buffer.
Convenient GUI can then allow to dump the entire buffer to disk for offline
analysis or just pick a region limited by frequency and time.

Pluggable demodulators. We just want to provide a new program and
have the data piped to it.

Advanced squelch. Squelch is a function that detects signal presence and
disables the output when no signal is present (so the user is not annoyed by noise,
or, alternatively, system resources are not wasted by trying to decode empty
channels). Usually, this is implemented by measuring the absolute signal level
and setting the threshold. Unfortunately, the absolute signal level can vary wildly
because of changing atmospheric and interference conditions or when the antenna
is physically moved. Measuring squelch level with reference to the surrounding
channels proved to be much more stable in our implementation.

Additionally, the squelch should employ some averaging to avoid false positives
on short bursts of noise. However, this could mean that the beginning of the
transmission could be cut until the moving average detects the signal. So the
squelch function should hold a small buffer and replay it when it triggers.

Histogram. Setting the correct gain of the input amplifier can be tricky,
especially with low-end SDRs that have low dynamic range and are prone to
saturation. Plotting a real-time histogram of samples proved to be an extremely
useful help.

Automatic frequency correction. Frequency of the signal may drift due
to instability of transmitter and receiver oscillators or due to factors like Doppler
shift, which is a concern when receiving signals from fast-moving objects like
satellites. Additionally, the user may not know the frequency accurately. The
software should automatically determine the exact frequency of the signal and
make precise tuning.

15.2
151 —
B
ﬁ 15 1
c
o
k]
3 14.9
Qo
14.8 B
14.7

50
100
150
200
250 |
300
350

Time [minutes]

Figure 1.1: Frequency drift of rtl-sdr receiving GSM900 signal for six hours. Data
were obtained by running [kalibrate-rtl] and rtl_sdr in a loop. The standard
deviation of magnitude 0.02 ppm is not shown.

Scanner. The SDR could be run unattended, looking for rare signals (ranging
from IOT sensors that only report their status once per hour over direct commu-
nications used during emergency to radioastronomical measurements looking for
ionized trails of meteors), saving them and generating summary reports.

We have searched for software alternatives and at least some of the aforemen-
tioned problems seem to be present in all available SDR programs (plus some
more, like some of them being closed-source or Windows-only). Then we consid-
ered implementing these features into Gqrx, but finally we decided to design our
own program from scratch. This is described in Chapters [3] and [

2. The spectrum channelizer

Many modern networks, for example GSM, TETRA, Tetrapol, or even FM ra-
dio broadcast, use frequency division multiplex with a lot of transmitters. This
chapter describes how to efficiently receive multiple transmitters at once. The
theoretical fundamentals of the algorithm were studied from Chapters 6 and 9 of
the book [Harris, 2004] and the implementation was discussed in the [Klusacek,
David, 2015] course. The channel oversampling was inspired by the channel
scheduler in [gr::filter::pfb_channelizer_ccf].

2.1 The channel selector

Consider that a frequency division multiplex has been received. The FDM con-
sists of several equally spaced channels and without the loss of generality one of
the channels is centered at frequency 0 (if this cannot be achieved, multiply the
signal by complex heterodyne so that this holds). The spectrum of the signal
looks like this:

@mmﬁ$mimg

Figure 2.1: Spectrum of several channels of a frequency division multiplex.

Suppose we are interested in channel k. We apply complex rotator to translate
it to frequency 0, filter it with a low-pass filter and downsample it to the required
target rate.

Let « denote the complex input signal (and z; the j-th sample), m the total
number of channels, h the real FIR filter (and h; its j-th coefficient), N the order
of the filter h and d the downsample ratio. We have:

rotated(n) = e 2"
N-1
filtered(n) = Z rotated(n — j)h;
=0
N-1
filtered(n) = xn_je_Q’”%(”_j)hj (2.1)
=0
N-1
downsampled(n) = filtered(nd) = Z $nd_je_2”%(”d_j)hj (2.2)
=0

alalalalilal Yala

-fs/2 fs/2
Translate

AIAIATAT IAIATAIS

-fs/2 fs/2

Low-pass filter

-fs/2 fs/2

Downsample

T Trrrnm

-fs/(2d) fs/(2d)

Figure 2.2: Applying complex rotator, a low-pass filter and downsampling a FDM

The complexity of the algorithm for one output sample is 2d complex multi-
plications for the input rotation (one for actually rotating the sample and one for
updating the current phase shift) and 2N real multiply-accumulate operations
for filter evaluation.

Let us rewrite the equation as

filtered(n Zajn je 2 2 wlh; =

—omitn omiE
=e 'm g xn_j(e mI ;).
Jj=0

We now observe that the term e27h; is not dependent on the input signal. We
can precompute a rotated filter A’ defined by

B, = e imip,
and from ([2.2)) we have

downsampled(n) —2mignd E Tnd—j],

hence we save repeated complex multiplications by e2™m when evaluating the
sum at the cost of evaluating complex FIR filter instead of realH Systems with

! Applying real FIR to a complex signal is the same as applying real FIR to two real signals,
where one is Re(z) and the second Im(z). Applying complex FIR to a complex signal requires
complex multiplication, which needs 6 floating point operations.

7

limited memory bandwidth may additionally benefit from the fact that we don’t
need to store the entire rotated baseband. For very long filters and small down-
sample ratios, some variant of FFT-assisted convolution like overlap-add may be
considered.

The resulting complexity for one output sample is N complex multiply-accu-
mulate operations for filter evaluation and 2 complex multiplications for the final
rotator. Whether the first or the second algorithm is faster will depend on actual
parameters (FIR order and decimation) and hardware details of the target plat-
form (e.g. speed of vectorized multiply-accumulate instructions). An advanced
implementation may measure the speed of different implementations for various
parameters and then pick the best one at runtime. Currently we don’t think
channel selection is a bottleneck in applications where we use it, so we leave this
as a possible future improvement.

Intuitively, one can imagine the optimized algorithm as transforming the low-
pass filter to a band-pass filter and then deliberately violating the Nyquist crite-
rion and using the spectral alias that appeared.

alalalalilal Yala

fs/2 fs/2

a

-fs/2 fs/2

Band-pass filter

Downsample
aliases

T rrrnm

-fs/(2d) fs/(2d)

Figure 2.3: Applying a band-pass filter and downsampling a FDM

The first algorithm is implemented in file kukuruku/scanner/xlater.c and
the second in kukuruku/server/xlate worker.c.

2.2 Computing multiple channels at once

Receiving multiple channels from the same FDM using multiple channel selec-
tors might be computationally infeasible. The channelizer can compute all FDM
channels with lower computational demands.

First, assume that m = d, i.e., we want to compute non-overlapping channels.
Recall again the equation , but let us rewrite the filter as a real matrix g of
size N/m x m (if the order of the filter is not divisible by d, pad it with zeroes).

9ap = Npm+q

hO hm e hN—m

h1 hm+1 e hN—m+1
g = . .) .
hmfl thfl e thl

Hence after rewriting (2.2) with the filter "matrix” by evaluating the filter by
rows and columns and substituting m for d,

|2

m—1 51

7271*1— (nm—j)
9q,pTrnm—j€ ;

MS

downsampled(n
=0

Q

3
I
o

where j = pm + ¢, so we have

=z

m—1 E_l

downsampled(n) = Z Z gqugpnm_pm_qe—%i%(nm—pm—q)‘
q=0 p=0

N
N _q .
Let us define wy, ¢ = > "o 9gpTnm—pm—q, SO We can write

m—1
downsampled(n Z Wy, g€ > iy (nm—pm—q) (2.4)
q=0
We notice that k, n and p are integers and e 2™ is 1 for integer u, so e~2™*" and

e~ 2mikp eyvaluate to 1 and we can write

downsampled(n E Wy, qu’” £

Recall and compare this to the definition of the inverse discrete Fourier transform,

N—-1
IDFT(2), = Y ane”™*/N.
n=0
So we can get a sample for every channel k£ by evaluating partial filters
Z;V:/ o - g(q,p)x(m(n — p) — q) for every ¢ and then Fourier-transforming the re-
sulting vector.
The data flow in the algorithm can be illustrated in the following figure.

static registers with FIR coefficients Every m ticks, all FIRs are

. . m buckets evaluated and their output
circular registers where :l each of size N/m is Fourier-transformed
input samples are shifted
\I T T T T T T T
o o [| || []]
o o ||| [[]]
IFFT
of sizem

@iO—H HERRER
input stream gy, | \: > ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

separated channels

vY vy

IRER

—p
filter

n

input commutator

with each sample, the

input bucket number is
decremented by 1 (mod m)

Figure 2.4: A spectrum channelizer

The complexity for m output samples (one sample of each channel) is 2N real
multiply-accumulate operations for filter evaluation and one FFT of size m, which
takes, depending on implementation, about 5N log N floating-point operations.

2.3 Oversampling

We have assumed d = m, i.e., the resulting channels do not overlap. This is not
always convenient, for example the Tetra network has channel spacing 25 kHz and
symbol rate 18 kHz and the Tetrapol network has channel spacing 12.5 kHz and
symbol rate 8 kHz and the demodulator usually requires 2 samples per symbol
(see |Nutaq| for further discussion). It would be therefore convenient if we could
have m such that channels are spaced by 25 kHz or 12.5 kHz and d such that each
channel has 18 kHz -2 samples / symbol = 36 kHz (Tetra) or 16 kHz (Tetrapol)
samplerate.

We call this oversampling and we will show that d and n can be arbitrarily
chosen positive integers. With distinct d and m, we have from ([2.4]):

N_q

m

/ —
Wy g = E :gqmwnd—pm—qv
p=0

m—1
downsampled(n) = Z w), 7qe*2ﬂ£(ndfpqu)
q=0
Again noticing that k£ and p are integers, 2P — 1, so

-1

3

downsampled(n) = w, Y o= 2mi L (nd—q)

Il
=)

q

As the sum is just running ¢ from 0 to m — 1, we can rearrange the order of
summands, so let ¢ = (nd — ¢) mod m. Therefore

10

m—1

downsampled(n) = Z W, (nd—q') mod m)e_z’”%q/ (2.5)
q'=0

and we have a (forward) discrete Fourier transform again.

2.4 FCL: the implementation

A C++ implementation of the algorithm is available in GnuRadio. Unfortunately
its performance seemed to be surprisingly poor. We hypothesize it is caused by
frequent thread switching and non-optimal layout of the filters in memory, but
we haven’t investigated the problem any further.

We have decided to implement the algorithm from scratch to see if a stan-
dalone implementation can be faster.

The “buckets” (partitioned FIR filters) are implemented as ring buffers. To
avoid modular wraparound, we precompute the bucket filter for every possible
position of the ring buffer pointer and then use plain multiply-accumulate. With
this, no modulo operations are needed, the compiler can easily vectorize the loop
and memory prefetch does not need to care about the wraparound. Of course
all these precomputed filters take some memory, but with the usual FIR order of
about 2000 and 100 buckets, this means 100 - (2000/100)? - sizeof(float) = 160 kB,
which fits into cache.

We use multithreading; if ¢ threads are running, each thread computes ev-
ery t-th output sample. The main thread reads input data in chunks of about
one megabyte (set in finetune.h) and synchronizes these worker threads using
mutexes and conditional variables.

To allow full loop unrolling, we compile multiple .so modules, each designed
for one bucket size, and one generic module for any bucket size. The right .so
is determined and loaded at runtime. However, this does not seem to contribute
any performance gain after all optimizations were implemented.

Our channelizer can read samples directly in float32, uint8_t and int16_
t formats, so the input stream can be directly piped into it from low-level SDR
utility like rt1_sdr, which further reduces resources demand.

Before channelization, the signal passes through a rotator, which allows to
impose a frequency shift. This can be used for runtime compensation of SDR
clock drift.

Finally, we have added a TCP server into the program. It can be used for
runtime reconfiguration - setting the frequency correction, determining power
spectrum of the input signal and selecting which channels we want to output.

2.4.1 Usage

The program is available in the Attachment [T} Build can be achieved by simply
running make. The dependencies are the FF'TW library and VOLK.

The program reads samples from stdin and writes them to a file (which could
be a named pipe). The output channels are interleaved, i.e., the first sample of
each channels is outputted, then second sample from each channel etc. When run
without parameters, it prints usage information. You need to somehow generate

11

the FIR filter you want to use. The FCL itself runs the program specified by the
-f parameter and expects it to output real numbers, one per line. We provide
a small wrapper around the GnuRadio Firdes module which can be used as this
program. It is called fir.py and again, if run without parameters, it prints simple
usage information. For example,

fcl> ./fir.py 2e6 40e3 15e3

creates a low-pass filter that when applied to a 2MS/s signal has 40kHz passband
and 15 kHz transition band (as we are applying a real filter to complex signal, it
is symmetric, so the actual passband would be from -40 kHz to +40 kHz).

The most important parameters are -n and -s specifying variables m and d
from Equation (2.5), o specifying the output file and -c specifying the list of
comma-separated channels we want to output. The input format can be chosen
by the -i parameter, default is complex float. The following command reads
2 MHz of FM broadcast from rtl-sdr, channelizes it to 20 channels with 200 kHz
bandwidth each and outputs channels 3 and 8.

rtl_sdr -f 90e6 -s 2e6 - | ./fcl -n 20 -s 10 \
-f "./fir.py 2e6 75e3 10e3" -c 3,8 -i U8 -o /tmp/myout.ch

FCL offers a simple telnet interface on localhost:3333 (host and port can be
changed with -b and -p parameters). The supported commands are:

e setrot <r> - set frequency correction in milliradians per sample; r is a real
number.

e getrot - print current frequency correction

e setchannels - set channels you want to output, format same as with -c
option, e.g. ”1,8,17” will output channels 1, 8 and 17

e getpwr [n] - print relative power of your channels. If an integer n in range
(1,32) is specified, the transform has n-times higher resolution.

Practical projects

We have created a Tetra receiver using FCL for channelization and provide it in
fcl/examples/tetra.py. Thanks to the speed of FCL, it is possible to receive
significant portion (30 channels) of the Prague Tetra network on a single mod-
erately powerful PC (Intel Core2Quad), and thanks to the telnet interface, it is
relatively easy to manage, debug and reconfigure. The receiver also automatically
determines and sets the frequency correction.

The developers of [tetrapol-kit| project have ported their multichannel receiver
to FCL, so they can reportedly decode 13 channels simultaneously on a Raspberry
Pi, while the previous GnuRadio-based receiver allowed 8 channels at most.

12

2.4.2 Measurements

We have compared the performance of the GnuRadio implementation and our
FCL when channelizing Tetra FDM.

GnuRadio 3.7.10 was profiled using volk_profile and the time was measured
using the gr_channelizer.py script (provided in FCL distribution).

The FIR filter for FCL was pregenerated using . /fir.py 1.8e6 18.5e3 1151
rcos > fir.txt command and the real execution time was measured using
time(1) utility. The exact FCL command line was

fcl -n 72 -s 50 -f "cat fir.txt" -c 23 -t 4 -i F32 -o /tmpfs/out.ch

Three different computers were tested to get an idea about behavior on dif-
ferent systems:

e Embedded system: Raspberry Pi 2 Model B (quadcore ARMv7 with 1 GB
DDR2 RAM) running Debian 8, compiled with additional flags -mthumb-
-interwork -mfloat-abi=hard -mfpu=neon

e Laptop: Intel Core i3-2350M (dualcore with HT) with 8 GB DDR3 RAM

running Debian 9

e Desktop: AMD FX-8150 (8-core) with 32 GB DDR3 RAM running Debian
8

54 - 105 samples (30 seconds at 1.8 MS/s) were recorded for the Raspberry Pi
and 540 - 10° samples (5 minutes at 1.8 MS/s) for the other two systems. They
were stored in tmpfs to avoid interfering with hard-drive access time.

The channelization was executed five times in a row with the first result
discarded to eliminate system warmup. The data were then plotted.

13

30 —

Throughput [complex input MS/s]
o
T

RPi2, gnuradio

RPi2, fcl, 1 thread generic worker
RPi2, fcl, 1 thread special worker

RPi2, fcl, 4 threads special worker
FX-8150, gnuradio

i3-2350M, gnuradio

8150, fcl, 1 thread generic worker
FX-8150, fcl, 1 thread special worker
FX-8150, fcl, 8 threads special worker

i3-2350M, fcl, 1 thread generic worker
i3-2350M, fcl, 1 thread special worker
i3-2350M, fcl, 2 threads special worker

i3-2350M, fcl, 4 threads (HT) special worker

FX

Figure 2.5: Channelizing Tetra (72 channels, 72/50 oversample, 1151 FIR order)
with GnuRadio channelizer and with FCL with various multithread and loop
unrolling settings, comparing ”generic” (loop for any bucket size) and ”special”
(bucket size specified at compile time) workers. The boxes show average of 4
measurements; the bars show the minimum and the maximum.

We see that FCL is 2 to 4 times faster on these systems.

14

3. Kukuruku: a client-server
SDR application

This chapter describes the design of a SDR application with features proposed in
Chapter [1.4]

3.1 Program architecture

Designing the system architecture and user interface posed a challenge. We had
experience with common use-cases and tried to capture them, however, several
decisions regarding decomposition as well as which features to implement on the
client and which on the server had to be made. Finally, we have implemented
the following:

e server - a program written in C, reading samples from SDR and imple-
menting commands like “stream channel of a specified width at a given
frequency” and “send me spectrum and histogram measurements”. The
server was intended to be simple and with low performance demands, as
one of our use-case is to have a Raspberry Pi or a similar embedded system
near the antenna and access it over the network.

e libclient - a Python module to act as a client. It can issue commands
and read channels from the server. This allows the user to create custom
applications using this infrastructure with simple Python commands.

e kukuruku-gui - a GTK application built upon libclient.

3.1.1 The server

The server uses Python wrapper, osmosdr-input.py, around gr-osmosdr to read
samples. Thanks to this, it supports wide scale of radios supported by OsmoSDR,
but this also means that it depends on complete GnuRadio - a seemingly compli-
cated dependency for something intended to run on embedded systems. Fortu-
nately, as GnuRadio is now in repositories of most popular distributions, it does
not require complicated crosscompilation anymore.

The server communicates with this gr-osmosdr wrapper via a named pipe,
which is initialized in init.sh, and simple messages are passed from the server
to the wrapper. The first byte specifies type (TUNE, PPM or GAIN) and then the
parameters follow. See set_param_thr in osmosdr-input.py for the message
parser.

Server architecture overview

Upon startup, the server parses command-line options and then spawns one
thread that reads from the SDR into a ring buffer, another that reads processed
data and writes them to clients and yet another that binds to a socket and accepts
connections from clients.

15

Next, one thread is spawned for each channel we are receiving (this is called
zlater as it translates the signal from the SDR with a complex heterodyne to
zero frequency, low-pass filters it and down-samples it) and one for each TCP
client (client _read thr), reading commands and executing them using parse_
client req).

Server tuning

The file constants.h contains several tunable options:

e SDRPACKETSIZE defines how many samples to read and process at once.
For SDRs with very high sample rates (>20MS/s) it might be increased to
reduce overhead.

e BUFSIZE defines how many packets to hold in history buffer. You definitely
want to set it so that BUFSIZE * SDRPACKETSIZE * sizeof (complex64)
fits into RAM.

e WRITE_FRAMES_SYNC defines how many packets to write to disk at once when
dumping history. As writing a big chunk of data may trigger a long fsync
and lag the system, it is advised to keep this number small.

3.1.2 Protocol description
Client-server concepts

The server keeps track of channels (in the worker list), TCP clients (in the tcp-
cli list) and mapping which clients wants which channels (the req _frames list).
The structures are defined in worker.h and socket.h. The supposed usage of
this mechanism is as follows:

e The client creates some channels with the CREATE_XLATER message.

e The same client, or maybe some other client, issues the ENABLE XLATER
message. The server starts sending samples of the selected channel. Multi-
ple clients can be subscribed to the same channel and one client can have
multiple channels subscribed.

This mechanism is intended to allow having “worker clients” that process data
and “management clients”, maybe with GUI, that set up the channels and then
disconnect and leave the architecture running.

Communication protocol

Everything is little-endian. On big-endian machines all messages are automati-
cally converted using functions in bits.c on server and little-endian unpacking
by Python struct/numpy on client (we have tested this to some extent, but we
unfortunately don’t have access to a big-endian machine powerful enough to ac-
tually run this).

Each message in the stream is preceded by an 8-byte header, of which 4 bytes
are message length and 4 bytes message type. Available message types are defined
in client parser.h. After the header, payload follows.

16

The payload are Google Protocol Buffer messages except the message that
transfers raw data. These messages are defined in c2s.proto and client_
parser.h files. We provide an example communication on Figure [3.1] showing
the most important messages.

client server
GET INFO

\J

SRV_INFO

sanplerate, frequency, ...

ENABLE_SPECTRUM

A

\j

PAYLOAD

power spectrum data

CREATE_XLATER

frequency, filter coefficients, remotelD, ...

RUNNING_XLATER

remotelD, ID, ...

ENABLE_XLATER
ID, sample format

PAYLOAD

ID, channel data

A

\J

A

\j

A

Figure 3.1: An example client-server session

The client connects to the server, requests server information and then re-
quests spectrum data. Once ENABLE_SPECTRUM is received, the server streams
PAYLOAD messages with payload = SPECTRUM. They contain array of floats rep-
resenting power density computed as

Re(DFT(z);)? + Im(DFT(2);)?
-) aB]

a; = 10 logw <

using this definition of DFT: DFT (), = S0 2pw,e2™*/N with Hamming
window w. In a similar manner, ENABLE_HISTO can be set and arrays of uint16_
t will be streamed, representing histogram of samples read from SDR.

Of particular interest should be IDs used to reference xlaters. In the CREATE_
XLATER message, the client sends a remotelD, which is a nonnegative integer
chosen arbitrarily. The sever assigns a unique ID and sends this mapping in the
RUNNING _XLATER message. The xlater is further referenced by this unique ID.
In RUNNING XLATER messages sent to other clients remotelD is set to —1. This
enables multiple concurrent clients to create xlaters without ambiguity.

Finally, an ENABLE_XLATER command is issued and the server begins streaming
of the channel data. The interesting parameter in this message is sample _format.
The native format is a single-precision float. While this provides good dynamic
range, it wastes the network bandwidth as 8 bytes are required for each sample
(one float for real and one for imaginary component). Therefore, the server can
convert the samples into int16_t or even int8.t (at the cost of introducing

17

quantization error). The samples are automatically converted back to floats by
the libclient library, so the user should not notice anything (except the reduced
8-bit precision when using int8_t). Technically, this is accomplished by summing
all filter coefficients in absolute values (calc_max_amplitude in xlate worker.c)
to get the maximum value of a sample a filter can produce and then scaling this
number to a target data type.

3.1.3 The libclient library

libclient.py is a Python module that provides an interface to the server. The
protocol commands are basically mapped to libclient’s functions. The available
functions have Docstring comments to provide the necessary description.

This short example creates a FM radio listener with some constants hard-
coded. A more comprehensible example including the use of callbacks can be
found in cli.py.

from gnuradio.filter import firdes
import libclient
import math

cl = libclient.client()

cl.connect("localhost", 4444)

automatically subscribe newly created xlaters
cl.set_auto_enable_xlater(True)

tune the radio to 100 MHz
cl.set_frequency(100000000)

compute the rotator exponent

rotate = 300000.0/2048000 * 2+*math.pi

cl.create_xlater(rotate,
int (2048000/128000), # decimation
firdes.low_pass(1l, 2048000, 50000, 10000, firdes.WIN_HAMMING), # filter
"./modes/wfm.py", # binary to pipe the channel to
-1) # no history
raw_input(’...’) # wait

The library can provide dictionary of xlaters. The dictionary is indexed by
ID and contains XlaterT objects with the following properties:

e float rotate — rotator in radians per sample
e int decimation — the ratio of sdr_samplerate/channel_samplerate

e bool sql — apply squelch to this channel. When spectrum measurement is
received, libclient calls the sql_callback function and based on itsreturn
value, it either will or will not write channel data to the demodulator stdin.

e bool afc — apply afc to this channel. When channel data are received,
libclient computes FFT on them and sums absolute values of upper and
lower half of the bins. It then adjusts the xlater frequency to follow the
peak of the signal.

e int rid — local reference 1D

18

e threading. Thread thread — feeder thread

e Queue.Queue data — queue of channel data that are written to program
stdin

e string sqlsave — in case of closed squelch, this contains the last frame of
payload. Then, when the squelch opens, we replay this last frame, so the
beginning of the conversation won’t get lost.

The dictionary can be obtained by the get _xlaters function. If anything
requiring concurrent access is to be done with it, the dictionary must be synchro-
nized by calling acquire xlaters and release _xlaters to acquire and release
the associated lock in libclient.

For more complex applications, several callbacks can be registered within
libclient:

o fft_callback — registers a function that is called every time a power spectrum
measurement is received. The arguments to the function are list of floats
representing the spectrum and timestamp.

e histo_callback — registers a function that is called every time a histogram
measurement is received. The argument to the function is a list of inte-
gers representing the histogram. Currently its length is 256 and it is not
normalized in any way.

e info_callback — registers a function that is called every time an INFO mes-
sage is received. The argument to the function is an unpacked protobuf
INFO message.

e xlater_callback — registers a function that is called every time the xlaters
dictionary is changed. If the user of the library is a GUI, it is, for example,
expected to update control panels.

e sql_callback — registers a function that is called every time a payload for
a channel that has squelch enabled is received. The function is called with
arguments of rotator and decimator and it is expected to evaluate whether
squelch for this channel should be open and return a boolean. When False
is returned, the flow of samples from libclient to the demodulator process
is paused.

3.1.4 The kukuruku-gui client

A graphical program was implemented using PyGTK for GUI controls and Py-
Game, a convenient SDL wrapper, for drawing histogram and waterfall.
The program reads configuration files from directory ~/.kukuruku.

e ~/.kukuruku/gui — basic parameters, like font size, default server address
and preferred sample format.

e ~/.kukuruku/modes — file containing description of available demodua-
tors. Each demodulator has its own INI section (section is defined by
[SectionName]) and inside the section are the following parameters:

19

— nhame

— program — the binary that is spawned and raw channel data are piped
to its standard input. The format of the data is stream of single-
frecision floats, representing I and Q samples.

— rate — the required sample rate of the channel. It may actually vary
a bit as the server supports only rational decimation - if no integer
decimation coefficient is found, the nearest is used.

— bw — the required bandwidth of the channel. A low-pass FIR filter with
this bandwidth is automatically generated using the GnuRadio Firdes
library.

— filtertype — type of the filter, currently hamming (a Hamming win-
dow filter) and rcos (a Root Raised Cosine filter) are supported. Most
modes are using the Hamming filter, but some digital protocols have
Raised Cosine prescribed by specification.

— transition — "quality” of the filter. If filtertype == hamming, then
this is the transition band (from 0 to -60 dB) in Hz. Lower transition
band means higher filter quality and higher computational demands.
If filtertype == rcos, then this is the order of the filter. Higher
order means higher filter quality and higher computational demands.

— resample — if set to true, then a -r <float> parameter is added to the
binary, representing the ratio real sample rate / required sample rate, so
the demodulator can make corrections according to this (see the de-
scription of the rate parameter). As our modes use GnuRadio, we sup-
ply this parameter to the gnuradio.filter.fractional resampler
block. If set to false, then if an exact integer decimation cannot be
found, an exception is thrown.

The demodulators provided by default include demodulators for wide and
narrow FM and Tetra and Tetrapol networks. We tried to keep them simple, using
basic GnuRadio blocks, and we hope they could be used as example demodulators
in other applications.

3.2 User guide

3.2.1 Installation

The software is available in the Attachment 2l Both the server and the client can
be compiled by simply typing make in kukuruku/server and kukuruku/client
directories. The depencencies are FFTW3, VOLK, GnuRadio with Python bind-
ings, protobuf-compiler and protobuf-c-compiler. Additionally, the client requires
python-configparser, PyGTK and PyGame, and if you want to decode Tetra
and Tetrapol networks, you need to have third-party tools [tetra-listener| and
[tetrapol-kit]| installed — you need tetra-rx and tetrapol_dump in $PATH.
Unfortunately, shortly before our work was finished, GnuRadio version 3.7.10
was released with a broken grcc compiler. We have reported the bug to the
developers (the bugfix is awaiting merge) and we provide a patch in grcc.patch.

20

The workaround without applying the patch is to open each .grc flowgraph in
gnuradio-companion IDE and press the Build button. Another bug unfortu-
nately causes GnuRadio to ignore SIGPIPE, so the demodulator won’t get closed
automatically at the end of the stream.

On the client side, the .kukuruku directory containing sample configuration
should be copied to the user’s home directory and the path to modes directory
should be edited in .kukuruku/gui.

3.2.2 Starting it

On the server, run init.sh with the following arguments:

server> ./init.sh
Usage: ./init.sh device rate ppm

The device parameter is the device string recognized by GrOsmoSDR. It
is usually in format radiotype=number denoting the driver to be used and the
device number. For example the first rtl-sdr device on the computer would be
rt1=0.

The rate parameter sets the sample rate in Hz and the ppm parameter sets
the initial frequency correction in parts-per-million. A tool such as [kalibrate-rtl|
or our general abstraction of it, [kalibrate-everything|, can be used to measure
frequency error of the radio by comparing it to the GSM signal from a base station
(it is assumed that a GSM BTS has more accurate clock than especially low-end
SDRs).

On the client, run kukuruku-gui.py with the argument server_hostname:
port (the default is 4444 and can be changed in init.sh). A window should
appear with waterfall and histogram data in it.

3.2.3 Usage

Radio parameters - frequency, gain and frequency correction - can be changed
by editing the text boxes in the toolbar and pressing Enter. The frequency field
accepts SI prefixes k, M and G like 100M for 100 - 10¢ Hz.

You can adjust the gain of the SDR so the histogram looks somewhat balanced
and the dynamic range of the SDR is fully used.

Pick a signal on a waterfall and right-click on it to start a demodulator.
Once the demodulator is running (a vertical dashed line will be displayed on the
waterfall), the frequency can be changed via drag-and-drop and the bandwidth
via scrolling. These parameters can also be edited in the bottom panel, which
lists all the demodulators. Automatic frequency correction and signal squelch can
be activated there too.

If you right-click on an existing demodulator in the waterfall, instead of cre-
ating new xlater on the server, this existing one is subscribed.

If you hold CTRL while right-clicking on the waterfall when creating a new
xlater, it will start the channel from that point in the history buffer.

21

JOYSUSRINS MF-NYNINYNY Y g€ 9IS

LE6SL9ELY A 0006T 5021 ELOVEE- T
S A LA A 00061 5024 8BELZT O

vwwﬂ m“__ Mm"ﬁ anba.d 10s 24y ssedmoq adiydi4] 18s540 ov_

HoL |odelial
H22 _onm;mk
113

(*zE) elep mey
(4BZT) B3EP MEY
(1¥Z) W4 moien

lea|n gpoeT-

gpLTT-

ETERE
apsoT-

e €894 JOjod
-t HELERRES]
-+ wmbuey uig

apze-

apos-

(s) wiL

-+ 3|E05 W) | 9PLS-
suo1}dp saxy

abelany gpog-
suondo puegqoaseg

978520 S0-90-910Z '2H) 2SvEZy | 0'T10S 60 TUED || bSdd | 43 nrzy| B fousnben | (g] [l @

22

4. The scanner

With this tool, the user can specify frequency ranges he is interested in, and the
SDR is then periodically automatically pseudorandomly retuned. If some signal
is present, it is dumped into a file. It is possible to specify how long the sig-
nal should be recorded after it has disappeared (e.g. there could be an expected
pause of speech on analog trunked networks) and it is possible to schedule record-
ing of a given channel using a crontab-like format (”record frequency associated
with sirens every Wednesday noon”). The scanner does not visit the specified
frequencies sequentially or randomly, but based on the result of SHA(timestamp
+ nonce). With this, one can have multiple scanners with time synchronized
over NTP scanning the same bands from different locations. Unfortunately, as
consumer-grade SDR hardware supporting precise timing synchronization is not
readily available, one cannot determine the location of the signal source using
multilateration.

4.1 Program architecture

The program is available in Attachment [3| and consists of KukurukuScanner
Python module, xlater.c Swig module, which implements the algorithm de-
scribed in Section and sorter.py script, which allows simple categorization
of recorded signals. The Swig module must be compiled by running make with
Swig3 being the dependency.

The main script scanner. py firsts uses util.py to read the configuration and
then spawns gr-osmosdr thread which reads samples from SDR and Kukuruku-
Scanner thread which runs the main loop.

4.2 Configuration

The configuration is in the form of several *.conf files in the ~/kukuruku/
scanner directory.

There are two special files named main.conf and blacklist.conf. The
main.conf file contains general configuration and is richly commented. The
blacklist.conf file contains list of frequencies which should be either ignored
or at least activity on them should not be regarded as a newly found signal. Its
format follows:

<i or a> <frequency> <bandwidth> [optional comment]
Each line denotes frequency interval
[frequency — bandwidth /2, frequency + bandwidth /2] .

If the first column is i, signals that have center frequency in this interval are
completely ignored (e.g. non-interesting radio stations); if it is a, signals are
directly archived (recorded to the archive/ directory), so sorter.py does not
prompt the user about them.

The main. conf file contains the following important options (and some more,
which are documented in comments inside the configuration file):

23

samplerate — The SDR sample rate.

nonce — A salt that is hashed together with current timestamp to deter-
mine the next frequency when random scanning is in progress.

stick — The number of seconds to record the active channel for.

silencegap — The number of seconds there must be no signal on the
channel to be treated as inactive (e.g. if it is an analog speech, gaps are
expected).

stickactivity — If set to yes, the scanner will continue to record the
channel even if stick seconds already elapsed if the channel is still active
(i.e., the signal level was above squelch threshold in the last silencegap
seconds).

messgain — Specifies which of the SDR gains should be used for autogain.
The scanner computes histogram every time it retunes and adjusts the SDR
gain based on it. Note that these adjustments happen on per-frequency
basis, which is important because the antenna and the input stage may not
have the same gain on all frequencies.

All the other *.conf files are supposed to contain description of channels

or frequency ranges we want to scan. They contain one [General] section and
optionally sections specifying channels.

The [General] section contains either freqstart and freqstop options, then

the file specifies frequency range, or only the freq option, and then the file
specifies a single frequency which is used as a center frequency for the SDR. All
the frequencies are specified in Hz and SI prefixes k, M and G are supported.

The [General] section may contain the stick, stickactivity and silence-

gap options. The values of these options from main.conf are then overriden for
this particular frequency or range.

If the file specifies a single frequency, the following options can be specified:

e cron, containing crontab-like string (in format minute hour day_of month
month day_of week) specifying when the frequency should be tuned to.
Single number expressions, * (meaning always) and */N (meaning when
divisible by N) are supported.

e randscan. If set to no, the frequency is tuned to based only on the contents
of the cron option — it is not scanned pseudorandomly.

Then, again for the single-frequency file, a list of channels follows. FEach chan-

nel has its own section (started by [ChannelName]) and two or three parameters:

e freq, its frequency. abs(channel frequency — frequency specified in config
file) must be less than half the SDR samplerate (so the channel is ”visible”
to the SDR).

e bw, the channel width.

24

e pipe (optional). If specified, instead of saving raw 1/Q samples to a file,
the command is executed. If the command contains the string FILENAME
it is replaced by frequency and timestamp.

Let us show two examples of these configuration files.

[General]
freqstart=445000
freqstop=449000

This file specifies a single frequency range 445 to 449 MHz. The range is then
broken into overlapping chunks and the radio is pseudorandomly tuned to them.
For example if the SDR sample rate is 2 MHz and overlap (in main.conf) is set
to 0.2, the chunks will be

{(444.8,446.8), (446.0, 448.0), (447.2,449.2)} MHz.

The next example demonstrates scheduled recording.

[General]
freq=100M

cron=0 12 * * x*
stick=300
randscan=no
stickactivity=no

[Channel1]

freq=99700k

bw=144k

pipe=my_wfm_demodulator.py _FILENAME_

First we instruct the scanner to tune to 100 MHz, but not randomly (randscan
set to no), but only every day at 12 o’clock. We then record for 300 seconds and
we don’t continue recording even if the signal is still present after 300 seconds
(stickactivity=no). Finally, we don’t save raw 1/Q samples into file, but pipe
them to stdin of our program instead.

4.3 Usage

The scanner.py script is simply executed with optional arguments -d, -p and
-o specifying OsmoSDR device string (e.g. rt1=0 for the first rtl-sdr device on
the system), frequency correction in parts per million and the output directory.
The program begins scanning and saves the recordings to the output directory.

4.4 Sorting the signals

The sorter.py script takes recorded files from the current working directory (or
files given as command line arguments) and displays menu, where the user can
demodulate the signal using modes from Kukuruku client (described in Section
and decide whether to keep or delete the recording and whether to add the

frequency to a blacklist.

25

Conclusion

We have described important algorithms for selecting one or more channels from
a wideband received signal and we have then used them to build several applica-
tions that we considered were missing, be it a high-performance channelizer or a
univesal receiver. We have already seen FCL in real deployments. And even if the
Kukuruku client-server SDR software won’t get widespread adoption, we consider
it important to show features, both of the user interface and the flexible network
architecture, that could be implemented into other similar software projects.

Future work

In the Section [2| we have concluded that our channel selector and channelizer are
"fast enough” for our current applications (which are namely receiving Tetra and
Tetrapol networks). Should the need for better performance arise, one can im-
plement further optimizations, for example selecting between evaluating FIR by
definition and by FFT overlap-add method. The same case is with the channel-
izer — one can probably devise more clever methods of partitioning work between
threads that don’t require moving too much data in memory.

We have already used Kukuruku in several practical use-cases. For future
developments, two features should be considered:

e Server-side demodulators. The bandwidth could be saved even more if
even the narrowband channel is not transmitted. This means having the
demodulator on the server and transferring only demodulated data, e.g.
bits in digital modes or audio (further compressed with some lossy codec).

e Server-side AFC and squelch, which may again save some bandwidth.

e Dynamic waterfall zoom. Currently the server can send arbitrary FFT size,
but this cannot be smoothly zoomed at the runtime. Implementing this
to be bandwidth-efficient might be tricky as currently we are transmitting
floats, i.e., 4 bytes for each pixel. Possibilities to use some image compress-
ing technique (DCT, wavelet) should be investigated.

e Autogain by analyzing the histogram, in a similar way the scanner has.

e Extending the protocol by some kind of "privileges”, which specify users
that are allowed to tune the SDR, or only receive channels etc.

The scanner is pretty simple as of now and may receive the biggest atten-
tion. Both the backend (more intelligent peak detection — there are lots of
heuristic algorithms to investigate), the frontend (one can imagine a GoogleMap-
like interface showing gigantic waterfall collected over several days with recorded
signals overlaid) and even the hardware (if we somehow manage to smuggle time-
synchronization signal into the baseband, we could build an experimental multi-
laterating system) may be improved.

Our three programs are mostly independent. Depending on future develop-
ments, we may unify some duplicate functionality (like SDR retuning and the
channel selector), or even create an abstraction layer that would help sharing one
or multiple SDRs between these programs.

26

Bibliography

GnuRadio. http://gnuradio.org/. Accessed: 2016-05-22.
Gqarx. http://gqrx.dk/. Accessed: 2016-05-22.

gr::filter::pfb_channelizer_ccf. gr::filter::pfb_channelizer_ccf. URL http:
//gnuradio.org/doc/doxygen-v3.7.10/classgr_1_1filter_1_1pfb_
_channelizer__ccf.htmll

Fredric J. Harris. Multirate Signal Processing for Communication Systems. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2004. ISBN 0131465112.

kalibrate-everything. https://brmlab.cz/user/jenda/
kalibrate-everything. Accessed: 2016-05-22.

kalibrate-rtl. https://github.com/steve-m/kalibrate-rtl. Accessed: 2016-
05-22.

Klusacek, David. NPFL109 Digital Sound Processing. University Lecture, 2015.

Nutaq. Implementation of Gardner symbol timing recov-
ery in System Generator. http://www.nutaq.com/blog/
implementation-gardner-symbol-timing-recovery-system-generator.
Accessed: 2016-07-23.

tetra-listener. https://brmlab.cz/project/sdr/tetra. Accessed: 2016-07-22.

tetrapol-kit. https://brmlab.cz/project/sdr/tetrapol. Accessed: 2016-07-
22.

27

http://gnuradio.org/
http://gqrx.dk/
http://gnuradio.org/doc/doxygen-v3.7.10/classgr_1_1filter_1_1pfb__channelizer__ccf.html
http://gnuradio.org/doc/doxygen-v3.7.10/classgr_1_1filter_1_1pfb__channelizer__ccf.html
http://gnuradio.org/doc/doxygen-v3.7.10/classgr_1_1filter_1_1pfb__channelizer__ccf.html
https://brmlab.cz/user/jenda/kalibrate-everything
https://brmlab.cz/user/jenda/kalibrate-everything
https://github.com/steve-m/kalibrate-rtl
http://www.nutaq.com/blog/implementation-gardner-symbol-timing-recovery-system-generator
http://www.nutaq.com/blog/implementation-gardner-symbol-timing-recovery-system-generator
https://brmlab.cz/project/sdr/tetra
https://brmlab.cz/project/sdr/tetrapol

List of Figures

[I.1 Frequency dritt of rtl-sdr receiving GSM900 signal for six hours. [
| Data were obtained by running |kalibrate-rtl] and rtl_sdr in a |
[loop. The standard deviation of magnitude 0.02 ppm 1s not shown. 5

[2.1 Spectrum of several channels of a frequency division multiplex.| . . 6
2.2 Applying complex rotator, a low-pass filter and downsampling a |
[EDMI . .o o 7
2.3 Applying a band-pass filter and downsampling a FDM| 8
[2.4 A spectrum channelizer|.00 10

[2.5 Channelizing Tetra (72 channels, 72/50 oversample, 1151 FIR or-
der) with GnuRadio channelizer and with FCL with various multi-
thread and loop unrolling settings, comparing ”generic” (loop for
any bucket size) and "special” (bucket size specified at compile
time) workers. The boxes show average of 4 measurements; the

[bars show the minimum and the maximum. 14
[3.1 An example client-server session| 17
[3.2 A kukuruku-gui screenshot|00 o000 22

28

List of Abbreviations

ADC Analog to digital converter

AFSK Audio frequency shift keying, a method of transfering data over radios
originally intended for voice

AM Amplitude modulation

APRS Automatic Packet Reporting System, a data network using AFSK mod-
ulation

DAC Digital to analog converter
DCT Discrete cosine transform

DFT Discrete Fourier transform

FCL Fastest Channelizer in Litométice
FDM Frequency division multiplex

FFT Fast Fourier transform, an algorithm that performs DFT in O(N log N)
time

FFTW Fastest Fourier Transform in the West, a software library implementing
the FFT algorithm

FIR Finite impulse response
FM Frequency modulation

FPGA Field-programmable gate array, a chip whose internal logical connections
can be changed by software

GUI Graphical user interface

HT (Intel) HyperThreading

LAN Local area network

PFB Polyphase filterbank

SDL Simple DirectMedia Layer, a multimedia library
SDR Software defined radio

VHEF Very high frequency, radio band between 30 and 300 MHz

29

Attachments

1. fc1/, the channelizer described in Chapter |2l This is the snapshot of repos-
itory https://jenda.hrach.eu/gitweb/?p=£fcl.

2. kukuruku/, Kukuruku interactive SDR client and server described in Chap-
ter [3] This is the snapshot of repository
https://jenda.hrach.eu/gitweb/?p=kukuruku.

3. kukuruku/scanner, the scanner described in Chapter dl This is from the
https://jenda.hrach.eu/gitweb/?p=kukuruku repository too.

4. grcc.patch, a patch fixing broken grcc in GnuRadio 3.7.10. The bugreport
is available at http://gnuradio.org/redmine/issues/927.

For production purposes we recommend obtaining the latest versions from the
aforementioned repositories as we plan to continue to maintain our software.

30

	Introduction
	The Software Defined Radio
	Motivation
	SDR hardware
	GnuRadio
	Gqrx

	The spectrum channelizer
	The channel selector
	Computing multiple channels at once
	Oversampling
	FCL: the implementation
	Usage
	Measurements

	Kukuruku: a client-server SDR application
	Program architecture
	The server
	Protocol description
	The libclient library
	The kukuruku-gui client

	User guide
	Installation
	Starting it
	Usage

	The scanner
	Program architecture
	Configuration
	Usage
	Sorting the signals

	Conclusion
	Future work

	Bibliography
	List of Figures
	List of Abbreviations
	Attachments

