
Introduction PaX Future

PaX: Twelve Years of Securing Linux

PaX Team

LATINOWARE 2012.10.10

PaX: Twelve Years of Securing Linux



Introduction PaX Future

About

Linux

I Kernel developed by a community of companies and volunteers
I Started in 1991 by Linus Torvalds
I The ’brain’ of the operating system (distributions, Android)
I Kernel vs. Userland

PaX: Twelve Years of Securing Linux



Introduction PaX Future

About

PaX

I Host Intrusion Prevention System (HIPS)
I Focus: exploits for memory corruption bugs
I Bugs vs. exploits vs. exploit techniques
I Threat model: arbitrary read/write access to memory
I Local/remote and userland/kernel
I Linux 2.2.x-2.4.x-2.6.x-3.x (2000-2012)
I Developed by the PaX Team :)
I grsecurity by Brad Spengler (spender)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

About

PaX Features

I Runtime code generation control (non-executable pages)
I Address Space Layout Randomization (ASLR)
I Kernel self-protection
I Various infrastructure changes for supporting all the above

PaX: Twelve Years of Securing Linux



Introduction PaX Future

The Problems

Software Development Lifecycle

I Idea/Design
I Development/Implementation
I Deployment/Configuration
I Operation/Maintenance

PaX: Twelve Years of Securing Linux



Introduction PaX Future

The Problems

Vulnerabilities

I Conceptual/Design mistakes
I e.g., lack of authentication or encryption

I Implementation mistakes
I Common Weakness Enumeration
I e.g., memory corruption bugs

I Deployment mistakes
I e.g., wrong file permissions

I Operation mistakes
I e.g., no monitoring/logging

PaX: Twelve Years of Securing Linux

http://cwe.mitre.org/


Introduction PaX Future

The Problems

Exploit Techniques

I Focus: exploits against memory corruption bugs
I Execute injected code (shellcode)
I Execute existing code out-of-(intended)-order (return-to-libc,

ROP/JOP)
I Execute existing code in-(intended)-order (data-only attacks)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

The Solutions

Design

I Prevent exploits from compromising userland applications
I non-executable memory pages
I runtime code generation control
I address space layout randomization (ASLR)
I control flow enforcement
I (limited) data flow protection

I Prevent exploits from compromising the kernel itself
I non-executable memory pages, etc

PaX: Twelve Years of Securing Linux



Introduction PaX Future

The Solutions

Implementation

I Static analysis (pay attention to clang/gcc/sparse warnings :)
I Runtime checks

I userland/kernel separation
I memory object lifetime checking

I Fuzzing (e.g., trinity by Dave Jones)

PaX: Twelve Years of Securing Linux

http://codemonkey.org.uk/projects/trinity/


Introduction PaX Future

The Solutions

Deployment

I Mandatory Access Control (policies)
I Linux Security Modules (LSM)

I Apparmor, SELinux, Smack, Tomoyo, Yama, etc
I grsecurity, RSBAC, etc
I Logging, log analysis
I Incident management

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Userland

Overview

I Non-executable page support on i386
(PAGEEXEC/SEGMEXEC)

I Runtime code generation control (MPROTECT)
I Address Space Layout Randomization (ASLR, RANDEXEC)
I Compatibility (per-binary feature control, text relocations,

trampoline emulation)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Userland

PAGEEXEC/SEGMEXEC/MPROTECT

I PAGEEXEC: paging based simulation of non-executable pages
on i386 (in 2000, pre-NX days)

I SEGMEXEC: segmentation based simulation of
non-executable pages on i386 (in 2002)

I MPROTECT: runtime code generation control (in 2000)
I NX-bit is in wide use nowadays (BSDs, iOS, Linux,

Windows/DEP, etc)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Userland

ASLR

I Introduced in July 2001 as a stopgap measure (not how it
turned out :)

I Idea: artificially inflated entropy in memory addresses (both
code and data)

I Reduced exploit reliability
I In wide use nowadays (BSDs, iOS, Linux, Windows, etc)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel Self-Protection

Overview

I Non-executable kernel pages (KERNEXEC)
I Read-only kernel data (KERNEXEC, CONSTIFY)
I Userland/kernel address space separation (UDEREF)
I Restricted userland-kernel copying (USERCOPY)
I Instant free memory sanitization (SANITIZE)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel Self-Protection

KERNEXEC
I Non-executable pages for the kernel’s address space
I Executable userland pages must not be executable from kernel

mode
I i386: code segment excludes the entire userland address space
I amd64: compiler plugin or UDEREF
I Supervisory Mode Execution Protection (CR4.SMEP) since Ivy

Bridge (in mainline linux already)
I Page table cleanup: read-write vs. read-execute regions

(kmaps)
I Special cases: boot/BIOS, ACPI, EFI, PNP, v8086 mode

memory, vsyscall (amd64)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel Self-Protection

Constification

I Creates read-only data mappings
I Moves data into read-only mappings (.rodata,

.data..read_only)
I Patches (descriptor tables, top level page tables, etc)
I Compiler plugin (ops structures)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel Self-Protection

UDEREF

I Prevents unintended userland access by kernel code
I Disadvantage of the shared user/kernel address space

I i386: based on segmentation
I data segment excludes the entire userland address space

I amd64: based on paging
I remaps userland page tables as non-executable while in kernel

mode
I needs per-cpu page global directory (PGD)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel Self-Protection

USERCOPY

I Bounds checking for copying from kernel memory to userland
(info leak) or vice versa (buffer overflow)

I spender’s idea: ksize can determine the object’s size from
the object’s address

I Originally heap (slab) buffers only
I Limited stack buffer support (see Future section)
I Disables SLUB merging

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel Self-Protection

SANITIZE

I Reduces potential info leaks from kernel memory to userland
I Freed memory is cleared immediately
I Low-level page allocator, not slab layer
I Works on whole pages, not individual heap objects
I Kernel stacks on task death
I Anonymous userland mappings on munmap
I Anti-forensics vs. privacy

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Toolchain Support

Overview

I gcc plugins (gcc 4.5-4.7)
I Kernel stack leak reduction (STACKLEAK)
I Function pointer structure constification (CONSTIFY)
I User/kernel address space separation for code only

(KERNEXEC)
I Size parameter overflow detection&prevention

(SIZE_OVERFLOW)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Toolchain Support

GCC plugins

I Loadable module system introduced in gcc 4.5
I Loaded early right after command line parsing
I No well defined API, all public symbols available for plugin use
I Typical (intended :) use: new IPA/GIMPLE/RTL passes

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Toolchain Support

STACKLEAK plugin

I First plugin :)
I Reduces kernel stack information leaks
I Before a kernel/userland transition the used kernel stack part

is cleared
I Stack depth is recorded in functions having a big enough

stack frame
I Sideeffect: finds all (potentially exploitable :) alloca calls

I Special paths for ptrace/auditing
I Problems: considerable overhead, races, leaks from a single

syscall still possible

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Toolchain Support

CONSTIFY plugin

I Automatic constification of ops structures (200+ in linux)
I Structures with function pointer members only
I Structures explicitly marked with a do_const attribute
I no_const attribute for special cases
I Local variables not allowed

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Toolchain Support

KERNEXEC plugin

I Prevents executing userland code on amd64
I i386 achieves this already via segmentation
I Sets most significant bit in all function pointers

I Userland addresses become non-canonical ones
I GIMPLE pass: C function pointers
I RTL pass: return values
I Special cases: assembly source, asm()
I Two methods: bts vs. or (reserves %r10 for bitmask)
I Compatibility vs. performance

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Toolchain Support

SIZE_OVERFLOW plugin
I Detects integer overflows in expressions used as a size

parameter: kmalloc(count * sizeof...)
I Written by Emese Révfy
I Proper implementation of spender’s old idea
I Initial set of functions/parameters marked by the

size_overflow function attribute
I Walks use-def chains and duplicates statements using a

double-wide integer type
I Special cases: asm(), function return values, constants

(intentional overflows), memory references, etc
I More in our blog

PaX: Twelve Years of Securing Linux

http://forums.grsecurity.net/viewtopic.php?f=7&t=3043


Introduction PaX Future

Userland

Overview

I Control Flow Enforcement
I Size overflow detection & prevention

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Userland

Control Flow Enforcement

I Compiler plugin
I (No) binary-only code support
I Assembly source instrumentation
I Runtime code generation support (Just-In-Time compiler

engines)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Userland

Size Overflow Detection & Prevention

I Same plugin as used for the kernel
I Unique problems (build system integration, namespace

collisions, etc)
I Already in progress (apache, glib, glibc, openssl, php, samba,

syslog-ng, etc)
I Would have caught CVE-2012-2110 (ASN1 BIO vulnerability)
I Would have caught CVE-2012-2131 (the incorrect fix to

0.9.8v) too
I Needs support for c++ (chromium, firefox, etc)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

Overview

I Link Time Optimization (LTO)
I LLVM/clang support
I Improved USERCOPY
I Improved REFCOUNT
I Improved STACKLEAK
I Control Flow Enforcement
I Limited data flow enforcement (KERNSEAL)
I PaX for hypervisors (HYPEREXEC)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

LTO

I Mostly works with gcc 4.7
I Takes 5 minutes and 4GB RAM on a quad-core Sandy Bridge
I Problems: KALLSYMS, tracing, initcalls, section attributes
I Better support for other plugins (CONSTIFY, REFCOUNT,

SIZE_OVERFLOW, STACKLEAK, USERCOPY)
I New plugins: static stack overflow checking, sparse attributes,

etc

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

LLVM/clang

I http://llvm.org and http://clang.llvm.org
I Mostly works with linux-side patches only
I clang 3.1 and -integrated-as, .code16gcc/.code16
I -fcatch-undefined-behavior (ext4 triggers it on mount)
I LTO
I Port the gcc plugins to llvm
I New plugins for clang (not really feasible with gcc)

PaX: Twelve Years of Securing Linux

http://llvm.org
http://clang.llvm.org


Introduction PaX Future

Kernel

Improved USERCOPY

I Problem: kmalloc-* slabs
I Separate them into kmalloc-user-* and kmalloc-*
I Mark only kmalloc-user-* with SLAB_USERCOPY
I kmalloc_user vs. kmalloc
I Problem: find affected kmalloc calls
I Needs whole-tree static analysis (LTO plugin)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

Improved REFCOUNT

I Problem: false positives (not every atomic_t variable is a
reference counter)

I Statistical counters and unique identifiers (only increments),
bitflags (directly set only)

I Needs whole-tree static analysis (LTO plugin) to find the
above kind of variables

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

Improved STACKLEAK

I Problem: performance impact, races
I New per-task kernel stack used for USERCOPY
I Problem: find affected local variables
I Needs whole-tree static analysis (LTO plugin) to find the

above kind of variables

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

Control Flow Enforcement

I Compiler plugin
I (No) support for binary-only modules
I Assembly source instrumentation
I Runtime code generation support?
I Performance impact is critical (<5% desired), very hard

problem

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

KERNSEAL

I Ensures that certain kernel data cannot be modified
unintentionally (arbitrary write bug)

I Credential structures, memory management data, filesystem
metadata/data (page cache), etc

I Read-only slab
I Read-only kernel stacks (except for the current one :)
I Trusted pointer chains, trusted root pointers (current stack,

per-cpu data?)

PaX: Twelve Years of Securing Linux



Introduction PaX Future

Kernel

HYPEREXEC

I Virtualization does not increase security (despite marketing :)
I It introduces a new privilege level in the software stack

(hypervisors)
I Hypervisors represent additional complexity and bugs
I Apply the kernel-self protection features to the hypervisor

(Xen, KVM)
I Enforce (guest) kernel self-protection from a higher privilege

level

PaX: Twelve Years of Securing Linux



http://pax.grsecurity.net
http://grsecurity.net

irc.oftc.net #pax #grsecurity

http://pax.grsecurity.net
http://grsecurity.net

	Introduction
	About
	The Problems
	The Solutions

	PaX
	Userland
	Kernel Self-Protection
	Toolchain Support

	Future
	Userland
	Kernel


