
MASTER THESIS

Jan Hrach

Passive emitter tracking

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Mgr. David Klusáček, Ph.D.
Study programme: Informatics

Study branch: Software and data engineering

Prague 2019

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. This thesis was not used
to achieve an academic grading elsewhere.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague, 2019-05-05 signature of the author

i

ii

I would like to thank to my supervisor for great insights, tips and advice, and to
SPOJE.NET and Wendulka.net ISPs for providing rooftop hosting to make this
project possible.

iii

iv

Title: Passive emitter tracking

Author: Jan Hrach

Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. David Klusáček, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: We have implemented a TDOA multilateration of transmitters on an
unmodified rtl-sdr receiver using transmitters with known location as a timing ref-
erence. We present a brief theoretical background and describe the measurement
process which includes several approaches that correct the timing and frequency
errors between the receivers. Additionally, we have implemented an angle of
arrival direction finder using coherent rtl-sdr.

Keywords: TDOA multilateration sdr rtl-sdr

v

vi

Contents

Introduction 3

1 Introduction to digital signal processing 5
1.1 Signal model, from real to complex 5
1.2 Frequency shift and time reversal 6
1.3 Convolution and FIR filters . 6

1.3.1 Filtering . 7
1.4 Discrete Fourier transform and windowing 8

1.4.1 DFT and its inverse . 8
1.4.2 Windowing . 9

1.5 Crosscorrelation . 11
1.6 Efficient computation of correlation using Fourier transform . . . 12

1.6.1 Implementation, benchmark 13

2 Time difference of arrival 15
2.1 Theory . 15

2.1.1 Basics . 15
2.1.2 Geometry considerations on a round planet 15
2.1.3 Behavior of DSP operations in a multi-receiver situation . 16
2.1.4 Dilution of precision . 18
2.1.5 Precise clock synchronization 19
2.1.6 Previous work . 21

2.2 Implementation . 22
2.2.1 Hardware and software . 22
2.2.2 Feasibility . 23
2.2.3 PLL dithering . 24
2.2.4 The measurement process 24
2.2.5 Coarse synchronization with NTP 25
2.2.6 Power on and then sample continuously 25
2.2.7 Calibration . 26
2.2.8 Adjusting the gain . 27
2.2.9 Recording . 29
2.2.10 Resampling and frequency shifting 30
2.2.11 Coarse synchronization by long correlations 32
2.2.12 Computing fine correlations 33
2.2.13 Extracting the time difference 36
2.2.14 Plotting hyperbola to a map 36
2.2.15 Fixing non-optimal correlation functions 38
2.2.16 Prefiltering and whitening 41
2.2.17 Dealing with Single Frequency Networks 45

3 Angle of arrival 47
3.1 Directional antenna . 47
3.2 Antenna switching . 48

3.2.1 Coherent receivers . 50

1

3.2.2 Implementation . 51

Conclusion 55

Bibliography 57

A TDOA: user guide 59
A.1 Installation . 59

A.1.1 Recorder . 59
A.1.2 Correlator (the controlling server) 59

A.2 Configuration . 60
A.3 Taking a measurement (CLI version) 60
A.4 Taking a measurement (library version) 61

B TDOA: technical information 62
B.1 Locking . 62
B.2 Playing with gain . 62
B.3 Recorder API . 62
B.4 Database schema . 64

C TDOA: Results 66

D AOA: user guide 76

2

Introduction

Passive emitter tracking
We summarize methods of location of uncooperative radio emitters and imple-
ment two of them on commonly available hardware (namely, a rtl-sdr radio).

“Uncooperative emitter” means a radio transmitter over which we have no
control — e.g. a commercial broadcast radio station — and therefore we cannot
instruct it to broadcast a special signal for easier location (such as precise times-
tamps or a specially crafted pseudorandom sequence as for example GPS does).
We do not consider transmitters that are explicitly trying to avoid being located
— a plethora of countermeasures and counter-countermeasures can be thought
of.

“Passive” means that no transmitting from our side is involved. Therefore,
our device does not require any regulatory license. This is a rather common
approach when locating transmitters, though, and being “passive” is considered
a special feature when tracking non-transmitting objects (based on reflections
and disturbance of already existing ambient signals) such as airplanes with radios
turned off[1] or even people[2].

Applications

Emitter location is used for example in the sport of radio fox hunting, where
transmitters are hidden within a designated area and players are to find and
recover them. Related activity is weather probe recovery — a probe from a
bursted baloon falls to the ground while still transmitting, and if its location is
known, it can be recovered.

A more serious task is a supervision of the radio spectrum by a regulatory
body. Locating transmitters in bands with a “general license” can help to re-
solve radio interference problems and in licensed bands legal regulations can be
enforced.

Tracking airplanes (or, more precisely, their radios) can serve various means,
from hobbyist to military.

IoT networks such as Sigfox offer geolocation of the device based only on the
received signal. This task traditionally required a GPS receiver on the device,
increasing cost and energy consumption.

Emergency Position Indicating Radio Beacon (EPIRB) is a floating device
automatically released from a sinking ship. It transmits signal that is picked up
by rescue crews and the location is then determined using multilateration and
direction finding.

Structure of this work
• In Chapter 1 we lay out the basics of digital signal processing. The chapter

should make the reader familiar with the framework used later in this thesis.

3

• In Chapter 2 we describe multilateration by measuring the time difference
of arrival (TDoA). We lay out the necessary theory and then proceed to
implementation. Appendix A contains a user guide on how to use the
resulting software, Appendix B technical details regarding the software and
Appendix C the results and an example measurement protocol.

• In Chapter 3 we describe three approaches to measuring an angle of arrival
(AoA). Their advantages and drawbacks are described and then the most
promising one is implemented. Appendix D contains a user guide for the
AoA software.

4

1. Introduction to digital signal
processing

1.1 Signal model, from real to complex

We will model the signal received by the antenna as a sum of finitely many (M)
cosine waves with various amplitudes bk, frequencies fk and phases ϕk, sampled
at discrete time. That is, it is a function Z → R. This approach is sufficient for
our usage and we can side-step more complicated continuous-time signal theory
and calculus. The discrete time sampling corresponds to the fact that we get
the signal from our radio sampled by the ADC, and the finite sum of cosines can
reasonably approximate the continuous frequency spectrum (c.f. approximation
of smooth and periodic functions by Fourier series).

sn =
M∑

k=0
bk cos(2πfkn+ ϕk) (1.1)

sn is a a vector (of infinite length) indexed by n, one can imagine this as a n-
th sample. We will assume the sampling frequency to be 1 [Hz] to simplify the
equations. This can be later scaled if needed.

It is convenient to represent the signal in a complex form. We will substitute
the Euler’s trigonometric formula for cos(2πfkn+ ϕk):

cosx = eix + e−ix

2

sn =
M∑

k=0
bk
ei(2πfkn+ϕk) + e−i(2πfkn+ϕk)

2

=
M∑

k=0

(
bk
e2πifkn+iϕk

2 + bk
e−2πifkn−iϕk

2

)

=
M∑

k=0

(a2l
bk

2 e
iϕk e2πi

f2l
fk n +

a2l+1
bk

2 e
−iϕk e−2πi

−f2l+1
fk n

)

=
M∑
l=0

(
a2le

2πif2ln + a2l+1e
2πif2l+1n

)

=
N∑

l=0
ale

2πifln forN = 2M + 1, a2l = a2l+1 and f2l = −f2l+1

(1.2)

These conditions (a2l = a2l+1, f2l = −f2l+1) are satisfied by real signals,
but we will use this model (sn = ∑N

l=0 ale
2πifln) to describe complex signals too

(which we will generate in a moment) and our results will be valid for these too.
Therefore, a general signal is from now on a function sn : Z → C.

Now, in the next few sections, we will show some basic operations with signals.

5

1.2 Frequency shift and time reversal

Consider signal sn = ∑N
k=0 ake

2πifkn. Multiplying it pointwise by rn = e−2πifn

results in signal ŝn where all frequencies are shifted to the left by f (i.e., the
frequency f of the original signal becomes zero, and this is usually called down-
conversion):

ŝn = sn ⊙ rn =
N∑

k=0
ake

2πifkn ⊙ e−2πifn =
N∑

k=0
ake

2πi(fk−f)n (1.3)

The signal ŝn is (except for special cases) no longer real: the requirement
f2l = −f2l+1 no longer holds in general.

For convenience, define a time-reversing operator ρ, ρ sn = s−n. Again, let us
examine the result:

ρ sn = s−n =
N∑

k=0
ake

2πifk(−n) =
N∑

k=0
ake

2πi(−fk)n (1.4)

The amplitudes remained the same, however, the frequencies changed their sign.
If the signal was defined by A = {ak, k ∈ {0 . . . N}} and F = {fk, k ∈ {0 . . . N}},
it is now defined by A and −F .

1.3 Convolution and FIR filters

Convolution of two signals h and x is defined as

(h ∗ x)n =
∞∑

m=−∞
hmxn−m. (1.5)

Finitely supported vector h is sometimes called FIR filter1 and the numbers hk

are its taps.
We will show properties of convolution, but some of them only for finite sig-

nals. A more complicated reasoning would be needed to assure infinite sums con-
vergence. So, altough, all the sums go from −∞ to ∞, they should be thought
of as being in fact finite because the signals are only finitely supported. Conse-
quently, the summation order can be swapped freely.

• Additivity: (f + h) ∗ x = f ∗ x+ h ∗ x

• Commutativity: h ∗ x = ∑∞
m=−∞ hmxn−m

l=n−m= ∑∞
l=−∞ hn−lxl = x ∗ h

1Finite impulse response, as passing a signal through it affects only finitely many (the length
of h) samples. This is in contrast with Infinite impulse response filters, which we will not use
in this thesis.

6

• Associativity:

((h ∗ g) ∗ x)n =
∞∑

m=−∞
(h ∗ g)mxn−m

=
∞∑

m=−∞

∞∑
l=−∞

hlgm−lxn−m

=
∞∑

l=−∞

∞∑
m=−∞

hlgm−lxn−m m = m̂+ l

=
∞∑

l=−∞

∞∑
m̂=−∞

hlgm̂xn−m̂−l

=
∞∑

l=−∞

∞∑
m=−∞

hlgmxn−l−m

=
∞∑

l=−∞
hl(g ∗ x)n−l

= (h ∗ (g ∗ x))n

(1.6)

1.3.1 Filtering
Let us examine convolution of hn with signal containing only a single frequency:
sn = ae2πifn (we can then generalize this to more complicated signals thanks to
the additive property of convolution).

(h ∗ s)n =
∞∑

k=−∞
hkae

2πif(n−k) =
∞∑

k=−∞
hke

−2πifk

constant factor Hf

ae2πifn

sn

(1.7)

For hk = −h−k ∀k the factors Hf are real. This is therefore a filter which atten-
uates or amplifies various frequencies. And as convolution is commutative and
associative, one may also reason about the situation as if taps hk were filtered by
signal sn.

A simple example of a filter is the moving average, defined by

hk = 1/N for k ∈ {0 . . . N − 1}, hk = 0 otherwise.

Intuitively, we would expect this filter will smooth the signal and therefore at-
tenuate high frequencies. We can plot its Hf by computing (1.7) by definition:

N = 10
h = np.ones(N)/N
H = []
for f in np.linspace(0, 0.5, 100):

acc = 0
for k in range(len(h)):

acc += h[k] * np.exp(-2*np.pi*1j*f*k)
H.append(acc)

plt.plot(np.abs(H))

7

Figure 1.1: Frequency responses of moving average filters of various lengths

We use this to select radio transmitter at certain frequency and attenuate the
others. Of course more advanced hk than moving average must be used, as we
can see that moving average exposes significant ripples.

1.4 Discrete Fourier transform and windowing
Discrete Fourier transform of signal sn of length N is defined by

DFT(s)f =
N−1∑
n=0

sne
− 2πifn

N . (1.8)

The inverse transform is defined by

IDFT(X)n = 1
N

N−1∑
f=0

Xf e
2πifn

N . (1.9)

One can think of the DFT as a result of multiple convolutions of the signal with
complex exponentials with frequencies from the range [−0.5, 0.5). By taking the
absolute value2 of the result, we can infer “how much of a given frequency is in the
signal” (usually called spectrum of the signal). Additionally, computing DFT by
definition requires O(N2) operations, but there exist algorithms3 that are able to
compute it in O(N logN). We can exploit this for fast computation of arbitrary
convolutions.

1.4.1 DFT and its inverse
Another formalism of DFT [3] is defining a matrix FN ∈ CN×N and then executing
the transform as a multiplication of the input vector with this matrix. Inverse

2More precisely, we take 10 log10

(
Re(DFT(s)f)2+Im(DFT(s)f)2

N

)
to get the normalized power

in decibels.
3Fast Fourier Transform (FFT)

8

DFT is then multiplying the vector with a Hermitian conjugate of the matrix.

(FN)x,y = 1√
N
e

−2πiyx
N (1.10)

Using the matrix, we can show that the inverse transform is indeed an inverse,
that is, FN is unitary, FNF

H
N = I. The innermost sum of the matrix multiplication

is
N−1∑
p=0

e
−2πipy

N e
2πipx

N =
N−1∑
p=0

e
2πip(x−y)

N . (1.11)

This is ∑N−1
p=0 e

0 = N for x = y. For x ̸= y, e
2πip(x−y)

N ̸= 1 (the exponent will be
non-integer), and therefore we can apply the formula for the sum of a geometric
series

N−1∑
p=0

(
e

2πi(x−y)
N

)p

=
1 −

(
e

2πi(x−y)
N

)N

1 − e
2πi(x−y)

N

= 1 − e2πi(x−y)

1 − e
2πi(x−y)

N

, (1.12)

the numerator is the same as 1 − e0 and so the result is 0 for elements that are
not on the diagonal. Therefore, FNF

H
N = FH

N FN = I.

1.4.2 Windowing
The definition 1.1 and other methods consider signals of infinite length. However,
all recordings in real life, the length of DFT that can be numerically computed,
etc., are of course finite. And we may even want to artificially split the recording
into shorter chunks, for example because we are interested in some properties that
are changing over time4. We do this by multiplying the signal with a window
function, which is a function that is nonzero on some interval (usually 100 to
10000 samples long) and zero elsewhere. This will extract a piece of the signal
which we can further process. Even the naive approach of cutting the signal into
pieces and computing DFT from each of them without any preprocessing is in
fact an application of a rectangular window.

Figure 1.2: Signal and a portion of it selected by a window.
4Splitting the signal into overlapping chunks and computing DFT for each of them is called

short-time Fourier transform (STFT).

9

This process will necessarily create some artifacts and choosing the shape and
length of the window is a compromise between various parameters.

Windowed STFT as a bank of bandpass filters

STFT of signal sn windowed by window wn shifted by k (so we can select different
portions of the signal) is

STFT(s)k,f =
N−1∑
n=0

wn sn+ke
− 2πifn

N
downconversion

. (1.13)

Instead of applying a window and then taking the DFT, this can also be seen
as first shifting the frequency f we are currently analyzing to zero (c.f. (1.3))
and filtering the result with a filter wn (c.f. (1.5))5. This means that the window
function should behave as a low-pass filter, so we get the signal which we have
shifted to zero frequency, but preferably not much interference from the other
frequencies. As has been shown in 1.3.1, a moving average filter, which is in fact
a rectangular window, behaves as such. We define two frequently used window
functions and show their frequency response for comparison below.

Hann(N)k =0.5 − 0.5 cos 2πk
N

Nuttall(N)k =0.3635819 − 0.4891775 cos 2πk
N

+ 0.1365995 cos 4πk
N

−

− 0.0106411 cos 6πk
N

Figure 1.3: Plot of Hann and Nuttall window.

5It is in fact filtered by ρwn as the convolution has the minus sign, but as windows used in
practice are symmetric, it does not really matter.

10

Figure 1.4: Comparison of rectangular, Hann and Nuttall windows with 512 taps.

We can see that the Nuttall window has much better rejection at higher
frequencies, but the peak at zero frequency is somewhat broad. This means that
we will have much less unwanted noise, but will not be able to discern two peaks
that are close to each other. This is a common tradeoff when choosing the window
function.

Window and convolution of the spectrum

Another view of windowing is through convolution of the result of the DFT.
Pointwise multiplication of the DFT-transformed signal is equivalent to convo-
lution of the original signal and vice versa (we show this in 1.6 for the case of
discrete spectrum). Here we multiply the signal with the window, so after DFT
is computed, the result looks like the hypothetical spectrum of the original signal
convolved with the DFT image of the window, which causes smoothing of the
peaks. This is usually called spectral leakage of the peaks.

1.5 Crosscorrelation
Crosscorrelation is used to determine similarity and time shift of two signals.
Cross-correlation between signals f and g is defined as

x(f, g)k =
∞∑

j=−∞
fj+kgj.

This can be thought of as shifting the signal f over signal g and taking a dot
product at each step.

11

• Crosscorrelation is “convolution with time-reversed complex conjugate”,
therefore most properties of convolution apply. x(f, g) = f ∗ ρ(g)

• Additivity: x(f + h, g) = x(f, g) + x(h, g)

• Quasi-symmetry:

x(f, g)k =
∞∑

j=−∞
fj+kgj

l=j+k=
∞∑

l=−∞
flgl−k = x(g, f)−k (1.14)

• Filtering (convolution):

x(a ∗ f, g) = a ∗ f ∗ ρ(g) = a ∗ x(f, g), (1.15)

x(a ∗ f, b ∗ g) = a ∗ f ∗ ρ(b ∗ g) = a ∗ f ∗ (ρ(b) ∗ ρ(g)) =
= f ∗ ρ(g) ∗ a ∗ ρ(b) = x(f, g) ∗ a ∗ ρ(b)

• For finite-length signals we are usually interested only in the part of the
result where nonzero components of both signals fully overlap. This is
called the “valid mode”.

1.6 Efficient computation of correlation using
Fourier transform

Computing valid mode crosscorrelation of two signals f and g of lengths lf ≤ lg
naively requires (lg − lf + 1) · lf complex multiplications, but it can be computed
efficiently by applying the convolution theorem

x(f, g) = IFFT(FFT(f) ⊙ FFT(g))[: (lg − lf + 1)],

where ⊙ is pointwise complex multiplication, FFT is a fast Fourier transform of
length at least lg (signals are padded with zeros to this length6) and [: (lg −lf +1)]
extracts only the “valid” part of the result. This requires three FFTs (Θ(n log n))
and one pointwise multiplication (Θ(n)), so for many values of lf and lg it is
faster than computing the correlation by definition (Θ(n2) worst-case).

First, notice that for signals f and g of lengths lf ≤ lg (padded with zeros
elsewhere), a valid mode crosscorrelation

x(f, g)k =
∞∑

j=−∞
fj+kgj for k ∈ {0 . . . lg − lf}

is equal to computing a cyclic crosscorrelation, where the indices wrap around
using a modulo operation

xc(f, g)k =
N−1∑
j=0

f(j+k)%Ngj for k ∈ {0 . . . lg − lf}

6It might be useful to compute FFT of larger size than strictly needed. FFT algorithms
perform best when the transform size is a power of two, so for example computing a FFT of
size 2048 is better than computing FFT of size 1901, even though part of the result will be
discarded.

12

for N ≥ lg. This is because only the zero part wraps around.

Figure 1.5: Validity of circular convolution

We now claim that

x(f, g) = xc(f, g) = 1
N

IFFT(FFT(f) ⊙ FFT(g))[: (lg − lf + 1)].

Compute DFT of a cyclic correlation:

DFT(xc(f, g))φ =
N−1∑
k=0

N−1∑
j=0

f(j+k)%Ngje
−2πiφk

N

Split the exponential using e−2πiφk
N = e

−2πiφ(k+j−j)
N and reorder the sums while

substituting ĵ = j + k (as both the complex exponential and (j + k)%N wrap
around):

N−1∑
k=0

N−1∑
j=0

f(j+k)%Ne
−2πiφ(k+j)

N gje
2πiφj

N =
N−1∑
ĵ=0

fĵe
−2πiφĵ

N

N−1∑
j=0

gje
−2πiφj

N

Now apply the inverse DFT.

1
N

N−1∑
k=0

⎛⎝N−1∑
j=0

fje
−2πiφj

N

N−1∑
j=0

gje
−2πiφj

N

⎞⎠ e 2πiφk
N

1.6.1 Implementation, benchmark
A sample program to test the approach described above can be found in rtl-tdoa
source directory. The program is called with values of lf and lg and the number of
repetitions. It generates random data (from uniform [−0.5, 0.5] distribution) and
repeatedly computes crosscorrelation by-definition and then using Fast Fourier
transform. Correctness of the implementation is checked by comparing the re-
sults, and the total computational time for both approaches is printed.

13

For naive correlation, libvolk is used, which provides hand-optimized SSE,
AVX and NEON routines for computing complex dot product. For FFT, FFTW is
used.

Example compilation and usage of fftcorr_benchmark

$ make fftcorr_benchmark
$./fftcorr_benchmark
Usage: ./fftcorr_benchmark l_f l_g iters_naive iters_fft
Example: ./fftcorr_benchmark 512 1024 1000 1000
$./fftcorr_benchmark 512 1024 1000 1000
Maximum difference of the results: 0.000003
Total wall time: naive: 176 ms, FFT: 14 ms

The FFT implementation is faster asymptotically, but for small instances or
lf ≃ lg the naive computation might be faster in terms of wall time. However,
for parameters which we use in our radar, the FFT algorithm wins by a great
margin, so it is not needed to have two implementations and logic that will choose
between them.

14

2. Time difference of arrival

2.1 Theory

2.1.1 Basics
Consider that two geographically separated receivers with precisely synchronised
clocks are receiving the same signal:

Figure 2.1: The same signal received by two receivers

We see that the Receiver 2 received the signal about t12 = 1.2 microseconds
earlier. Therefore, we conclude that the position of the transmitter must satisfy
the equation

d1 − d2 = t12c, (2.1)

where d1 is the distance between Receiver 1 and the transmitter, d2 between
Receiver 2 and the transmitter, and c is speed of light (and the difference therefore
evaluates to 360 meters). Points that satisfy this equation form a hyperbola with
foci at our receivers and the length of semi major axis a = t12c/2.

2.1.2 Geometry considerations on a round planet
For the sake of simplicity, we suppose that everything is located on the Earth
surface. If we were trying to locate the transmitter in a 3-dimensional space
(e.g. an airplane), then hyperboloids instead of hyperbolas would be involved.
Unfortunately, due to hardware limitations, our device cannot track airplanes.
See 2.1.6 for discussion about airplane tracking.

Additionally, we are approximating the local surface of the Earth with a plane
as we are building system on the scale of a few kilometers (covering a city and
surroundings) where the curvature of the Earth is negligible. Some errors will

15

probably be introduced by local topography as radio waves of lower (VHF1 and
less) frequencies can “bend” around hills and buildings. We hope that we will
mostly encounter direct line of sight cases as both receivers and test targets are
on rooftops.

The third and the fourth receiver

Now we get a third reveiver, measure the time differences dt13 and dt23, and use
equation 2.1 to get two more hyperbolas. Then we compute the intersection of
all three hyperbolas and get the location of the transmitter.

Of course in practice all the hyperbolas will not intersect in one point because
of measurement errors, but if the errors are small, all individual intersections are
close together.

It is useful to add the fourth receiver:

• In rare cases of bad geometry, we can get two distant intersections or near-
intersections.

Figure 2.2: A “phantom” secondary solution

• Validating the result and estimating its error. With three receivers we have
three intersections, can measure their distance and infer that low distances
mean low error, but the third hyperbola is not independent of the first two.

2.1.3 Behavior of DSP operations in a multi-receiver sit-
uation

Ideally, we would apply crosscorrelation to the signals received directly from
the antenna and learn the time offset t12 at which the crosscorrelation gives the
maximum value. Unfortunately, it is not possible to directly sample this signal
(which might be in the UHF2 band), at least with commonly available hardware.

A software-defined radio receiver takes the signal from the antenna, applies
frequency shift, low-pass filtering and decimation and provides us with this result.

1very high frequency, frequency range between 30 MHz and 300 MHz
2ultra high frequency, frequency range between 300 MHz and 3 GHz

16

We can run crosscorrelation on this result. We therefore need to investigate the
properties of operations introduced in Chapter 1 in this situation.

Figure 2.3: A simplified block diagram of a software-defined radio using non-
zero intermediate frequency (top black), such as newer (R820T-based) rtl-sdrs.
The mixer does not convert the received signal to zero frequency, but leaves it
at several MHz, and the final shifting is done by DSP. Another approach is to
have a mixer producing complex signal centered at zero frequency and sampling
it with a quadrature ADC (bottom gray). This was used in older E4000-based
rtl-sdrs. For our application the difference between zero and non-zero IF is not
important.

Frequency shift

Let the signal an be received by the first receiver and shifted by frequency f and
the signal bn received by the second receiver and shifted by frequency g. Addition-
ally, as we have no means to synchronize the phase difference of the two receivers,
assume that an is shifted by an unknown phase ϕ. Compute crosscorrelation of
an and bn:

x(ane
2πifn+iϕ, bne

2πign)n =
∞∑

k=−∞
an+ke

2πif(n+k)+iϕbke2πigk

=
∞∑

k=−∞
an+kbke

2πifn+2πifk+iϕ−2πigk

= e2πifn+iϕ
∞∑

k=−∞
an+kbke2πik(f−g) = e2πifn+iϕ x(an, bne

2πin(g−f))n

(2.2)

Specially, if f = g (both receivers are tuned to the same frequency), we
get x(a, b), shifted by frequency f plus an unknown phase ϕ. We discard the
phase information by taking absolute value of the result. To assure that f = g,
despite potential frequency error caused by oscillator inaccuracy in the receivers,
we introduce a calibration process in 2.2.10 and 2.2.12.

Low-pass filtering

As per (1.15), low-pass filtering the source signal (by convolving it with a FIR
filter) is the same as low-pass filtering the result of the correlation. Therefore we
expect the result to be low-pass filtered (e.g. peaks in it will be “rounded”) but
otherwise intact.

17

Decimation

Intuitively, as the correlation result is now low-pass filtered, we can safely deci-
mate it. Explicitly, let D be the decimation (keep-1-in-d) function and h suitable
low-pass anti-aliasing filter. Then the correlation of the filtered and decimated
signal is

x(D(a ∗ h), D(b ∗ h)) = D(a ∗ h) ∗ ρ(D(b ∗ h)) = D(a ∗ h) ∗D(ρ(b ∗ h)), (2.3)

which is equal to D(a ∗ h ∗ ρ(b ∗ h)) if there is no power in the spectrum be-
yond Nyquist frequency and therefore no aliasing has happened. This will not
hold exactly for real-life signals, but the antialiasing filter in front of the ADC
should make this error negligibly low. Expanding the equation further, we get
D(a ∗ h ∗ ρ(b ∗ h)) = D(x(a ∗ h, b ∗ h)) = D(x(a, b) ∗ h ∗ ρ(h)), and because h
is a low-pass filter, it is symmetric, real, and approximates a sinc function, and
hence convolution with itself is nearly the same filter and therefore the result
approximates D(x(a, b) ∗ h)3.

2.1.4 Dilution of precision
For certain geometry of the receivers and the position of the transmitter, the
solution can be ill-conditioned in the sense of numerical stability and robustness
to measurement errors. The following picture shows an example of bad and good
geometry.

Figure 2.4: An unfavorable (left) and favorable geometry

We define the dilution of precision as DOP = ∆l
c∆t

, i.e., a highly “diluted” case
means that a small change in measured time difference results in huge jump in
computed location. We can then evaluate DOP at a point with respect to two
receivers by shifting the point by a small ϵ in all directions and observing the
minimum change of ∆t; the DOP is then ϵ

c∆t
. For a multi-receiver setup, we

evaluate DOP for all pairs of receivers and then pick the second-best value for
each point (as to determine the location, two hyperbolas are needed).

Figures 2.5 and 2.6 show the results of evaluating the DOP for each point
on a plane. We see that the things we want to measure should be somewhere
“in between of” our receivers. When picking up places for our receivers, we

3One can also imagine the last step as applying the low-pass filter twice. And low-passing
an already low-passed signal should make little difference.

18

Figure 2.5: Dilution of precision in our system with 4 receivers, superimposed on
a map of Prague.

should take this into account, though of course additional constraints like local
topography (the receiver should be on an elevated place) or price of rooftop
hosting must be considered.

2.1.5 Precise clock synchronization

It is absolutely crucial to have the same time on all receivers, preferably with
the precision of 100 ns or better (100 ns corresponds to 30 meters at the speed
of light, but because of dilution of precision, larger error in the final computed
position of the transmitter is expected). This can generally be achieved in three
ways:

Clock distributed via the network

The receivers are connected by some network, be it optical or microwave link,
that also carries precise timing information. This is not our case, as everything
that is available to connect our receivers without prohibitive expenses is standard
Internet, and protocols for time distribution over the Internet (such as NTP)
achieve several orders of magnitude worse accurracy.

19

Figure 2.6: Dilution of precision of 2 receivers located at (1, 0) and (−1, 0). For
example at the contour with value 2, a timing error of 1 unit (e.g. 0.5 in each
receiver in the opposite direction) results in a location error of 2.

GPS

A by-product of acquiring a GPS position is also timing information. The GPS
receiver is required to expose the timing signal, usually in the form of “pulse
per second” (PPS) pin, where a rising edge is provided exactly at the start of
each second. Such receivers can now be obtained for 20 USD or less. However, a
problem arises with synchronizing this signal with the SDR input, as most cheap
SDRs do not have any input for auxiliary signals. As the first try, one can mix
the PPS signal, shaped by a suitable filter, into the signal input of the SDR, or for
example short the signal input to ground every second and then look for sudden
disappearance of the signal. Unfortunately, it is difficult to precisely detect the
sample (or even do it with subsample resolution) when this event happened. We
think this might be solved by using the PPS signal to derive some sequence that
is designed for easy synchronization (such as Gold code) and then lock onto this
sequence, but we finally decided not to use GPS as a time source.

Reference transmitter

A reference transmitter with known location (which are ubiquitous in populated
areas) can be used as a source of shared time information. The only requirement
is either the ability to receive the reference and the target at once (which in most
cases requires special dual-channel hardware) or to quickly retune between these
two. Fortunately it turns out that even the consumer-grade rtl-sdr device can
retune fast enough before the clocks drift away. We have selected this approach

20

for our work.
The reference transmitter should have line-of-sight coverage, the transmitted

signal should not have any repeating patterns (as we can mistakenly “lock” the
timing synchronization to a wrong copy of that pattern) and should be wideband
so the crosscorrelation function is sharp and well-defined. The line-of-sight con-
dition is generally satisfied by public broadcasting transmitters (TV and radio),
and the latter two conditions are met by the digital ones (DVB-T and DAB, self-
similarity is removed by compression and whitening of the data stream). We use
DAB in our experiments as it has convenient bandwidth of 1.5 MHz (our SDR
has 2 MHz). DVB-T has 8 MHz and selecting only a quarter of the DVB-T mul-
tiplex while not yet fully synchronized seemed to be a bit difficult to implement
correctly (though a naive filtering seems to work pretty well in practice too).

2.1.6 Previous work
Mutability MLAT server

Airplanes transmit radio beacons with their number, type and other information
via a protocol called ADS-B. Thanks to this, the radar of flight control can
display not only bright spots where it detects airplanes, but also anotate them
with these metadata. Some airplanes, but not all, also transmit position. (private
planes probably tend to limit broadcasting of position because of popularity of
webpages like FlightRadar24, which receive exactly this data from the air and
“spy” on them)

mlat-server[4] aggregates these data with additional information “at which
sample the message started” (captured with rtl-sdr and a special ADS-B receiver
software mlat-client). When at least one airplane with known location ap-
pears, mlat-server uses it to resolve timing differences between the receivers and
computes positions of sources of all the other messages.

This demonstrates that rtl-sdr has clock stable enough to be used for mul-
tilateration even in the “receive known signal ... some delay ... receive target
signal” scenario. However, by design, this program works only with airplanes.

Mlátička

Mlátička [5]was a maturita work by Josef Gajd̊ušek aimed to create a TDOA
multilatelator for generic signals; author of this thesis was the supervisor of this
work. The first approach was GPS (described in 2.1.5) with shorting ADC input
to ground. Unfortunately, it was impossible to obtain reasonable resolution of the
timing signal this way. Josef then proceeded to build his own SDR with auxiliary
signal input, which will provide timestamps in the data stream. Due to hardware
problems and the lack of time, Mlátička never produced successful output.

TDOA evaluation

A proof-of-concept MATLAB implementation of TDOA for rtl-sdr accompanied
by a short article can be found in [6]. The authors used the retune-to-reference-
transmitter approach.

21

Blitzortung

The project Blitzortung.org uses Time Difference of Arrival of very low frequency
(VLF) radio waves to locate lightning strikes. They use GPS for time synchro-
nization and custom hardware based on common microcontrollers for recording.

Tamara family

For the sake of completeness, we must mention a product family produced by
Czechoslovak Tesla since the 1960s: Kopáč [short for Korelačńı Pátrač, meaning
Correlation Locator], Ramona, Tamara and VERA, a series of TDOA multilat-
erators using first analogue processing and then digital computers. VERA is still
in active development and can be considered a very up-to-date system, track-
ing both airplanes and terrestrial emitters and supporting wide range of signals.
Their products are, however, not available for general public.

2.2 Implementation
We have implemented a TDOA multilaterator using retune-to-reference approach
and ran it with four receivers located in Prague.

2.2.1 Hardware and software
The rtl-sdr radio

rtl-sdr is a common name referring to a class of USB dongles originally sold
for reception of TV broadcast. They are based on Realtek RTL2832U DVB-T
demodulator, which has an interesting feature: it can be switched into a mode
in which raw samples are sent over the USB, thereby working as a universal
software-defined radio. Although the parameters and overall quality of rtl-sdr
devices are rather low, they have seen widespread adoption because of their price
(starting at 8 USD), which is at least an order of magnitude lower than the usual
price of competing devices.

The Realtek RTL2832U chip is the ADC and DSP processor (parts labelled
“ADC” and “Digital downconverter” in Figure 2.3). A RF frontend — a device
containing a preamplifier, oscillator, mixer and a low-pass filter — needs to be
added. Older rtl-sdrs used Elonics E4000 and Fitipower FC0012, but since 2015,
Rafael R820T is the de-facto standard.

Parameters of rtl-sdr with R820T:

• Frequency range: 24 to 1750 MHz
• Bandwidth: approx. 2 MHz
• ADC sample rate: 2.4 MS/s (complex)
• ADC resolution: 8 bit (each sample is composed of 8-bit real and 8-bit

imaginary component)
• Oscillator with no temperature compensation. We have observed initial

errors between −20 and +70 ppm, and this initial error changes by another
3 to 10 ppm when the device heats up during normal operation.

22

Other hardware used

As antennas, we have used an unbranded telescopic TV dipole and several HAM
and professional scanner antennas (Diamond X-30 N and Discone SD-1300 U).
The signal from the TV antenna was rather weak, requiring setting of high gain in
the radio preamplifier. On the other hand, both professional antennas performed
reasonably well. Unfortunately, this means that the price of the high-quality
antenna is bigger than the price of the rest of the hardware.

The data from each radio is processed by a generic computer, in our case two
Raspberry Pis, an Orange Pi and an x86 laptop were used. This diversity enabled
us to ensure that no timing is dependent on specifics of the USB controller. The
computers run Debian GNU/Linux and don’t use any special configuration, e.g.
no real-time kernel patches.

The nodes are connected to an OpenVPN network because it was difficult to
get public IP address or IPv6 connectivity on some of the rooftops. OpenVPN
also provides somewhat secure environment.

The software is written in Python with C calls via CFFI where low-level
interaction with the radio driver or high performance is needed. The controlling
server communicates with nodes by sending JSONs over HTTP API. The user
can interact with the software using a CLI and the results of the measurements
are generated as HTML and displayed in a browser.

Figure 2.7: Our TDOA system architecture

2.2.2 Feasibility
First, the radio needs to be retuned without losing samples (or at least the number
of samples lost must be known) — otherwise, it will not be possible to tune to a
known transmitter to acquire timing information and then retune to the target
transmitter and use this timing information to measure it. We have conducted a
simple experiment: two rtl-sdrs were connected to the same signal source using
an antenna splitter. Both were tuned to some frequency, crosscorrelation was
computed and the offset of the largest peak was noted. Then the SDRs were

23

retuned and crosscorrelation was computed again. We then checked that the
offset of the largest peak is the same.

Next, the clock in the radio needs to have enough short-term stability (over
the course of several seconds while the measurement is being taken) to “hold”
the timing information during retuning. From repeatedly running kalibrate-rtl, a
program which compares local clock with the clock of GSM network, it is known
that this stability is better than 0.5 ppm, as the main source of inaccurracies is
thermal drift and the temperature of the device does not change rapidly. There-
fore if the measurement and retuning will take 0.5 seconds, the precision should
be better than c · 0.5ppm · 0.5s = 75 meters (multiplied by some DOP factor)
which seems somewhat usable. And if it turns out to be insufficient, a precision
oscillator can be used, though this increases the price.

And finally, the radio must be able to retune fast enough to make the measure-
ment possible, and this retuning must happen on all radios at the same moment.
This can be achieved by writing a custom recorder using the librtlsdr C API.

2.2.3 PLL dithering
An important feature of rtl-sdr worth noting is a PLL dithering. Unfortunately
not everything is known about it as detailed datasheets of chips inside rtl-sdr are
not publicly available. It happens when the desired frequency is not an integer
multiple of the base clock ·2−counter resolution. It looks as if when the PLL could not
generate the frequency directly, it resorts to randomly flipping the least significant
bit to approximate it on average. Of course this has detrimental effects on any
measurement that requires precise timing or phase control. Fortunately, it can
be turned off.

2.2.4 The measurement process
More details on each step are given in the following sections.

The following steps are executed by all nodes once:

• Synchronize clock via NTP (2.2.5)
• Power on the radio, wait several minutes for the parameters to stabilize

(mostly due to thermal drift during the warmup) (2.2.6)
• Pick a transmitter with known location to be used as timing reference
• Measure error of local oscillator by listening to a nearby GSM BTS (2.2.7)
• Tune to the reference transmitter, adjust gain (2.2.8)

The following steps are executed by all nodes for every target we want to
measure:

• Tune to the target transmitter, adjust gain
• Measure error of local oscillator via GSM again
• Record 0.5 seconds of the target, then 0.5 seconds of the reference, and then

0.5 seconds of the target again (2.2.9)

24

Then the recorded data are downloaded to the controlling server and further
processing is done for every pair of nodes:

• Resample and frequency-shift the recording to compensate for oscillator
errors according to the numbers from GSM calibration (2.2.10)

• Acquire coarse synchronization by computing series of very long correlations
(2.2.11)

• Compute detailed correlations (2.2.12)
• Estimate oscillator errors from these correlations
• Resample and frequency-shift the recording to compensate for oscillator

errors according to this new estimation
• Compute detailed correlations again
• Filter these detailed correlations to reduce noise (2.2.15)
• Use these correlations to compute the time difference between the reference

transmitter and the target transmitter
• Subtract distance to the known reference transmitter to obtain time differ-

ence of arrival of the target signal
• Plot the corresponding hyperbola to a map (2.2.14)

2.2.5 Coarse synchronization with NTP
The nodes need to be at least coarsely synchronized when the measurement is
taken — for example because we are retuning between the reference and the
target transmitter and this retuning needs to happen in a reasonable amount of
time so the unstable crystal in the radio will not diverge too much. We use public
NTP servers on the Internet to achieve this synchronization.

Another possible source of timing errors might be the computer system taking
the measurement itself. The data are read though USB and asynchronous libusb
callback is issued once a reasonably-sized chunk is transferred. Stock Linux with
no real-time patches is used, which means these callbacks can arrive arbitrarily
late. We record time when the callback is issued and then linearly extrapolate
the exact time at which each sample has been taken based on the sample rate.

In practice, this gives us a timing error of about 20 milliseconds, which is
sufficient for our application.

We have noticed problems with OpenNTPD after suspending to RAM, so
when using laptops or other suspending computers, so after resume, check that
the time is correct with ntpdate -q and possibly restart the daemon.

2.2.6 Power on and then sample continuously
When the radio is started, the AD converter, USB communication and other
hardware begin to consume more power and the entire device gradually heats up.
This induces thermal drift of the oscillator. And when the device is stopped, it
begins to cool down. Therefore, it is important to open the device, continuously
read data at a sustained rate (discarding them when they are not needed) and
wait a few minutes until the temperature stabilizes.

25

Figure 2.8: Crystal error in parts per million for the first 10 minutes after power
on. Sufficient stability is achieved after about 2 minutes.

2.2.7 Calibration
After the warmup stage, we need to determine how big the current error is. This
can be done by receiving some signal with known frequency. GSM (2G mobile
phones) is pretty suitable for this task: base stations have timing derived from
GPS timing reference, the GSM-900 band lies in the frequency range of rtl-sdr,
and GSM signal is ubiquitous.

The process is detailed in [7]. The physical GSM channel is split into mul-
tiple logical channels using a time division multiplex. Most of these channels
are used to carry data, but one of them, called Frequency Correction Channel
(FCCH), transmits all zeros, without any whitening. When zeros are modulated
by GMSK4, a specific tone at an exact frequency appears. This tone can be
detected and its frequency measured.

We have used the kalibrate-rtl program which implements this tone detection.
Unfortunately it requires exclusive access to the device. We have created a wrap-
per called kalibrate-everything that reads samples from standard input and feeds
them to the algorithm in kalibrate-rtl. The calibration process is as follows:

• Pick a GSM base station (from some public database of BTSs or by a
spectrum scan) with frequency fg

• Record several seconds of signal at frequency fg

• Find the FCCH tone in the signal, measure its frequency and compute the
offset fo = fmeasured − fg from the correct frequency

• Compute e = fo

fg
, the relative error of our oscillator. (for practical reasons,

e is often multiplied by 106 and then called ppm (parts-per-million) error)
4Gaussian minimum-shift keying, the modulation scheme used in GSM

26

Figure 2.9: R820T block diagram from datasheet[8], showing the three gain stages

2.2.8 Adjusting the gain
To obtain recording with high signal-to-noise ratio, gain of the radio has to be
set correctly. Too low gain will result in unused dynamic range of the ADC, too
high gain will cause distortions in the analog part and clipping in the ADC. This
is even more important in rtl-sdr than in more expensive radios, as rtl-sdr has
only 8-bit output and hence low dynamic range.

The R820T chip has three configurable amplifiers: the input “Low Noise Am-
plifier” (0 to 33 dB range), the Mixer amplifier (0 to 16 dB range) and the output
“Variable Gain Amplifier” (-5 to 37 dB range). Each of them offers 16 levels.
LNA and Mixer support autogain. The autogain takes about 50 milliseconds to
settle after retuning, depending on whether we are tuning between very strong
and very weak signal, or the levels of both signals are similar. This delay is still
fine for our usecase, as we make the retuning after 500 ms.

Gains in the original librtlsdr

The original librtlsdr uses the following heuristics and hardcoded constants to
adjust gain:

• If the gain is set to manual, VGA is set to a fixed gain of 16 dB. LNA
and Mixer gains are then ramped up together until the requested gain is
achieved.

• If the gain is set to automatic, VGA is set to a fixed gain of 26 dB and LNA
and mixer are set to autogain.

27

Figure 2.10: Requested gain vs. actual gain settings in librtlsdr.

One can sometimes obtain better results by using a more elaborate approach.

Determining the right gain

For autogain, VGA setting of 26 dB is almost always (in our case with strong
broadcast transmitters) too much and results in clipping. We simply exhaustively
try all 16 possible values and choose the largest one where clipping does not occur
yet.

In some rare cases, usually when there is a strong narrowband transmitter
nearby (in the frequency sense), autogain does not work well. Therefore, we
introduce a utility function: we know the frequency and bandwidth of the trans-
mitter we want to measure, so we record a short sample, compute power spectrum
of it, and define “fitness” as (mean power of the target transmitter)−(mean power
of everything else). As the first attempt we have used the difference between max-
imum and minimum in the spectrum (except the edges where the transition band
of the antialiasing filter attenuates the signal), but this has sometimes failed due
to very narrow high peaks that occur in the spectrum — probably a harmonic
of some digital signal in the radio or processing computer. This can be fixed by
considering the difference between the 10th and the 90th percentile. However, in
practice, both the difference-of-percentiles and the difference-of-means seem to
work equally well.

28

Figure 2.11: Example of a narrowband interference and the maximum and mini-
mum lines when receiving a DAB signal.

We considered the following methods to maximize the fitness:

• Exhaustive search of all 163 = 4096 possible settings. We can reduce the
search space to about half the size by excluding nonsense values like setting
LNA and Mixer to 0 and then VGA to the maximum. The straightforward
implementation can try one gain setting in about half a second, but this
could be reduced by changing the way how buffer management in librtlsdr
works. The inevitable time for one try seems to be 25 ms which takes the
setting itself plus about 20 ms to take a reasonable sample of the result. So
the search may take about two minutes after some additional work, but we
have decided it is not worth it.

• Entropy-based black-box optimization by scikit-optimize[9]. This ap-
proach samples the function at several points, fits it with a machine-learning
model of some kind and then tries to estimate where extrems of the function
lie based on the model. It was unfortunately prone to hitting local maxima
in the utility function. Additionally, on low-end nodes like Orange Pi the
construction of the machine learning model is slow.

• Random sampling. This works surprisingly well and picking the best of
30 random samples usually yields usable result.

We have implemented two methods and the user can choose between them
when requesting a measurement. The adcrange method enables autogain and
tries all 16 values of VGA gain. The random method does the same, then turns
autogain off and tries 30 random settings. Fitness function is then evaluated for
both the autogain and random samples and the best one is chosen. Additionally,
the recorder can be manually advised to change the obtained gains by a given
offset.

2.2.9 Recording
The timing uncertainty of HTTP requests from the controlling server is assumed
to be higher than the uncertainty of NTP time. Therefore when a recording is to
be done, the server generates a timestamp a few seconds in the future and tells
the nodes “recording will start from this timestamp”. At this timestamp, nodes

29

tune to the target frequency, wait 0.5 seconds, tune to the reference frequency,
wait 0.5 seconds, tune back to the target frequency and wait 0.5 seconds.

The reason for recording “more” from the target than from the reference is
that one of course picks a strong good transmitter as a reference (and hence
only a small sample is required to get high precision reading), whereas the target
transmitter is given and the quality may be poor (both because the signal strength
is low and the signal is narrowband or has poor autocorrelation function). And
we use the target-reference-target scheme (instead of simpler long recording of the
target and then short of the reference) in hope to minimize the mean duration
between the recordings of the target and the reference to avoid clock drift of the
receiver.

2.2.10 Resampling and frequency shifting
Data retrieved from the node contain 1.5 seconds of recording (as described in
2.2.9) and information about oscillator error (obtained in 2.2.7). This error man-
ifests itself in two ways: the sample rate of the recording is wrong and the fre-
quency at which the recording has been taken is also wrong.

First, we remove DC offset from the data by computing the mean of all samples
except the ones acquired during retuning and subtracting it from all samples.

Then, we use a fractional resampler to correct the sample rate. The fractional
resampler works by precomputing a number of filters (128 in our case) that repre-
sent an impulse sampled with a lag of 0/128, 1/128 . . . 127/128 samples (the first
filter is therefore a single number 1) and then performing Algorithm 1. This will
not produce an exact result for resampling ratio that is not an integer multiple of
1/128, however, as the sampled shifted impulse changes its values continuously,
it should give us a reasonable approximation.

Figure 2.12: An impulse sampled with various fractional delays

30

Algorithm 1: Fractional resampler
Implementation: xcutil.c:resample

INPUT:
resample_rate ... how many input samples to use for one output

sample (real number)
bank filterbank of N filters each of length L,

representing 0 to (N-1)/N sample lag
in input signal

OUTPUT: signal resampled by resample_rate

input_offset = 0.0
while input is not fully consumed:

integer_position = floor(input_offset)
filter_to_use = round((1-(input_offset-integer_position))*N)

yield dot_product(in[integer_position:integer_position+L],
bank[filter_to_use])

input_offset += resample_rate

The tricky part is how to generate these filters so they have unit gain at most
frequencies and a linear phase. We have used the gen interpolator taps tool
that comes with GNU Radio.

Finally, we compute the frequency correction. The frequency offset is fo = ef
(where e is the error computed in 2.2.7 and f is the frequency we are listening to)
and as we model frequency shift as rotation with complex exponential (in detail
described in [10]), we compute

correctedn = inputn e
2πinfo/fs ,

where fs is the sample rate.
Note that the frequency f is different for the target and for the reference

transmitter.

Builtin frequency correction in rtl-sdr

The relative error can be passed to the SDR driver and it automatically compen-
sates it:

• The Realtek RTL2832U chip has a register where the error can be written
and the internal clock generator which provides clock for the ADC then
changes its frequency according to this. (correction of the sample rate)

• When retuning, the driver instructs the tuner to tune to frequency f ′ =
(1 + e)f instead of f . (correction of the frequency)

There is a problem with this approach: both these “corrected” frequencies
are only approximate (due to limited precision of PLLs, c.f. 2.2.3). When this
correction is not used, the relative errors of sample rate and frequency are the

31

same, as they are both derived from one crystal oscillator. When this correction is
set differently on multiple SDRs, we break this relationship. And as we describe
in 2.2.12, we can precisely measure sample rate errors, but not frequency errors.
When the relative error is the same, we can compensate both.

Therefore, we need to set this compensation to the same value on all nodes
and do all the corrections during postprocessing. We can for example set it to
zero or to the mean error of all nodes.

2.2.11 Coarse synchronization by long correlations
Now we have two files sampled at approximately the same rate and from approx-
imately the same frequency (the error of GSM calibration is about 1 part per
million), but with up to 20 ms time offset (the imprecision of NTP and the USB
stack). We will compute long correlations of the part where we were tuned to the
reference transmitter:

Algorithm 2: Coarse synchronization
Implementation: xcutil.c:compute_alignment

INPUT:
in1, in2 recordings of the reference from 2 receivers

PARAMETERS:
winlen = 256*1024 length of the sliding window
range = 40*1024 maximum absolute time difference of signals
decimation = 32*1024 ... how far apart to lay the sliding windows
S = 16 final smoothing of the result

OUTPUT: time shift between in1 and in2

acc = array of zeros from -range to +range

for i in range(winlen/2, len(in1)-winlen/2, decimation):
w1 = in1[i-winlen/2:i+winlen/2]
w2 = in2[i-winlen/2+range:i+winlen/2-range]

result = valid mode correlation of w1 and w2

offset = argmax(abs(result))
acc[offset]++

smooth acc by a moving average filter of length S

return argmax(acc)

• The parameter winlen is chosen so that the correlation can be evaluated
efficiently with radix-2 FFT.

• The smoothing is important because the GSM correction has accurracy of
about 1 ppm and the position of the correlation peak may therefore drift
by a few samples over the course of the recording lasting a few seconds.

32

Now we low-pass filter the reference signal to its original bandwidth (e.g.
1.5 MHz for DAB, no filtering for DVB-T as the bandwidth of DVB-T is greater
than the bandwidth of rtl-sdr) and discard the beginning of one of the recordings
(depending on the sign of the result of Algorithm 2) so that they align.

2.2.12 Computing fine correlations
Then we compute much smaller correlations (with range, say, 128 samples, and
window size several thousands). We try to shift the result of each correlation by
a fraction of a sample to obtain subsample resolution (one sample at 2 MS/s is
150 meters, we want higher accuracy, and (1.15) tells us shifting the result is the
same as shifting the input signal if we use convolution for shifting). We pick the
offset and shift with the maximum absolute value.

Algorithm 3: Fine correlations
Implementation: xcutil.c:compute_correlations

INPUT:
in1, in2 input signals from 2 receivers
bank filterbank of N filters representing

0 to (N-1)/N sample lag
PARAMETERS:

winlen = 8192 length of the sliding window
range = 128 maximum time difference of signals
decimation = 2048 ... how far apart to lay the sliding windows

OUTPUT: correlation peaks, their fitness and a visualisation of them

image = empty image (grayscale floatmap)
for i in range(winlen/2, len(in1)-winlen/2, decimation):

w1 = in1[i-winlen:i+winlen]
w2 = in2[i-winlen+range:i+winlen-range]

result = valid mode correlation of w1 and w2

for each f in range(0, N):
tmp = filter result with bank[f], thereby shifting it by a fra-

ction of a sample
tmp = abs(tmp)
peak_height = max(tmp)
peak_pos = argmax(tmp)-f/N
fitness = peak_height/mean(tmp)

pick peak_pos and fitness with maximum peak_height from the above

yield peak_pos, fitness

tmp = upsample result, so the image has reasonable width
tmp = abs(tmp)
add tmp as a new row to the image

normalize each row of image to [0,1] as magnitudes of correlations

33

vary wildly
return image

Figure 2.13: The resulting peak pos list

Figure 2.14: The resulting image

The plot of the computed peak pos values and the returned image can be seen
in Figures 2.16 and 2.14. Notice that the correlation maximum is drifting. This is
caused by the two signals being sampled at different sampling rates (and, as the
radio has only one clock source, also with some frequency offset) — which means
that our correction in 2.2.10 was not exact. We fit the data with a line using
least-square method and use the resulting slope as an additional error factor,
reflecting both the incorrect sample rate and the incorrect frequency.

34

Figure 2.15: Scatter plot of improvement in accuracy after the additional error
factor has been corrected (the left plot has log axis).

It turned out that the approximation of the fractional delay filters is not pre-
cise enough and the filters tend to lower the amplitude around the shift of 1/2 of
a sample. This problem can be seen on a simple synthetic example of shifting a
sine wave, where the peak at π

2 drops to about 0.9998. This problem is negligible
on signals with sharp correlation peaks (such as the ones produced by DAB and
DVB-T, which we use for synchronization), but a bias against shifting is notice-
able with low-bandwidth signals where the peak is smooth. On the other hand
the smooth peaks suffer from noise in practice, so we see the peak with differ-
ent shifts as it randomly shifts with the noise; and as we make linear repression
and averaging of thousands of individual correlations, the errors “average out”.
Another approach would be to fit the points around the peak with parabolic,
Gaussian or other curve (which on the contrarydoes not work well in the case of
sharp peaks) or use some more complicated resampler. However, it looks like the
limitations in precision of our system do not stem from this biasing issue.

Figure 2.16: Shifting a sine wave (zoomed on the very top near π
2)

35

2.2.13 Extracting the time difference
We repeat steps 2.2.10 through 2.2.12 using the obtained additional error factor.
This compensation proved to be very helpful in cases of low SNR conditions.
Additionally, we compute the fine correlations not only over the reference, but
also over the target. The resulting image now looks like this:

Figure 2.17: The resulting image with both reference and target (rotated)

We see that we have listened for about 550 ms to one transmitter, then there
is some noise while the radios were retuning, then 500 ms of another transmitter
and then again the first one. We can see that the time difference of arrival be-
tween these two transmitters is about 66 samples (8.8 kilometers when sampled
at 2.25 MS/s), which indeed is the correct result5. To determine this result algo-
rithmically, we fit the lines (the target and the reference) using linear regression
and then calculate their distance along the offset axis (the vertical axis on Figure
2.17, horizontal on 2.14). By this, we measure the time difference ttgt −tref similar
to 2.1,

dt,1 − dt,2 − (dr,1 − dr,2) = (ttgt − tref)c. (2.4)

We know the positions of the reference and of our receivers and we can therefore
compute dr,1 and dr,2 for example by Haversine formula[11]. We compute the
resulting difference in distance,

∆L = dt,1 − dt,2 = (ttgt − tref)c+ (dr,1 − dr,2). (2.5)

2.2.14 Plotting hyperbola to a map
Having measured the ∆L, we need to plot points that satisfy the result into the
map. Let the Receiver 1 be located at coordinates (lat1, lon1) (in degrees) and
the Receiver 2 at (lat2, lon2). As symmetries would complicate the explanation,
assume that lon1 < lon2 and ∆L > 0.

5The location of these transmitters can be found on the website of local regulatory office
and the distance then simply measured on a map.

36

We first create a tangent plane to the Earth surface, with cartesian coordinates
and zero exactly in the middle between our receivers. We define a function
mapping geographical coordinates to our grid with unit kilometers6:

Ce = circumference of the Earth [km]

Get the center of projection
shift_lat = (lat1+lat2)/2
shift_lon = (lon1+lon2)/2

Scale the longitude, as the length of a given circle of latitude
is shorter when not on the equator.
lon_scale = cos(radians(shift_lat))

def spherical2dist(lat, lon):
Return horizontal and vertical coordinates in our grid
dx = (lon - shift_lon)/360 * lon_scale * Ce
dy = (lat - shift_lat)/360 * Ce
return dx, dy

Recall the definition and basic properties of a hyperbola[12]:
x2

a2 − y2

b2 = 1 (2.6)

Figure 2.18: A hyperbola. M is center of our coordinates, F1, F2 our receivers,
P possible location of the target transmitter.

The distance difference is exactly our ∆L, 2a = ∆L. Additionally, the coor-
dinates of point M are [0, 0]. We also know c = distance(F1, F2)/2 and therefore
b from the right-angle triangle abc. Solve the equation (2.6) for y:

y2 = x2b2

a2 − b2 = b2(x2 − a2)
a2

y = ±b
√
x2 − a2

a
.

(2.7)

6If one needs to make this work even when the 180 East/West meridian lies between the
transmitters, and near the poles, where the longitude distortion is extreme, more complicated
calculations would be needed.

37

We can now compute the points of the hyperbola by substituting numbers
from a to some large value for x in (2.7).

However, the real geometry probably does not look like Figure 2.18, that is,
F1 and F2 do not lie on the X axis. We therefore need to rotate the points by
angle Θ = arctan((F2,y − F1,y)/(F2,x − F1,x))7 around the center M (which is
conveniently chosen to be [0, 0]).

Finally, we apply the transform inverse to spherical2dist and obtain a list
of latitudes and longitudes, which we can import into virtually any geographical
software (for example, GpsPrune).

How far apart should one lay the x coordinates evaluated by (2.7)? That
depends on the shape of the hyperbola — whether it is almost line-like (∆L ≃ 0),
or very curved (∆L ≃ ±2c). We use a simple adaptive algorithm, starting with
an x increment of 10 meters, computing the point, and then if it’s too far away
from or too near to the previous point, changing the increment size accordingly.
We also lay the points closer to each other near the vertex, as the hyperbola is
more curved there, so higher resolution is necessary.

Figure 2.19: The generated hyperbola.

2.2.15 Fixing non-optimal correlation functions
Unfortunately, the result is not always as good as shown in Figure 2.17. The
following factors may cause the correlation function to be noisy:

1. Low signal intensity, as the transmitter is far away, has low power, has di-
rectional antenna that is pointing away from our receiver or there is a hill
or a building between the transmitter and the receiver. The problem here
is that we need good signal on at least three receivers for full location and

7arctan2 in the general case without the lon1 < lon2 assumption.

38

the receivers should preferably be far from one another to minimize the di-
lution of precision (2.1.4). This makes transmitters with directional/sector
antennas (as are for example most BTSes of cellular networks) difficult to
locate.

2. The signal is narrowband. Intuitively, as we are computing x(f, g) =
IFFT(FFT(f) ⊙ FFT(g)), we want the spectra of the signals to be wide
and flattop, as inverse Fourier transform of such functions is a narrow,
sharp pulse.

3. The signal has poor autocorrelation function. An example of this is FM
broadcast transmitting speech: during pauses between words, the only pay-
load being transmitted is a 19kHz pilot tone (and low-bitrate RDS data),
making the signal self-similar every 1/19kHz = 53µs. Certain phonemes or
even musical instruments cause similar problems which can be seen in the
Figure 2.20.2. On the other hand, digital transmission modes use various
compression, entropy coding and spread-spectrum methods making them
look “noise-like” and therefore this problem is usually not present.

4. There is interference from another transmitter. Poor receiver selectivity
may result in signal from another nearby transmitter mixing with our target,
making us measure difference between other transmitters than we think we
are measuring.

The problem (1) has no solution known to us except investing more in hard-
ware, for example using high-gain antennas and better radios and getting many
more receivers so at least three of them always have good reception. An approach
to this is described in [13], which analyzes precisely locating mobile phones using
cellphone towers. Given that modern BTSes are implemented using software-
defined radios, creating such system might even be possible by a single software
update, at least for frequency bands where the BTSes are able to receive signals.

Regarding problems (2) and (3), literature suggests manipulating the input
signal to obtain a better correlation result. This approach is tested in 2.2.16, but
with no noticeable improvement.

We deal with the problem (4) in the user interface of our program: spectra of
the signal are displayed in measurement report and should an interference happen
(which can be usually seen from the spectrum), the user is expected to modify the
settings of the recording to try to alleviate it, for example by slightly changing
the baseband frequency in order to tune farther away from the interference source
or lowering the gain.

The image generated by Algorithm 3 is handy for debugging the process. As
we can see in 2.20, the quality of real-life correlation functions varies wildly and
a simple linear regression of the peaks as presented in 2.2.12 is not enough to
determine the correct result. We have devised the following heuristics:

• Compute fitness of each peak as the ratio of its height and a mean value of
the rest of the correlation.

• Discard peaks with fitness lower than certain threshold. This fixes the
situation of FM broadcast briefly transmitting silence (and hence producing
a “bad” correlation), certain synchronization marks found in DAB multiplex

39

Figure 2.20: Examples of mediocre and bad correlation functions, computed by
Algorithm 3. The correct position of the peak is marked. The first two are FM
broadcast, the last one DAB radio with low SNR.

40

or just some brief dropout in the signal. We have chosen to sort peaks by
fitness and drop the first decil (a hyperparameter that can be tuned).

Now there are still peaks that are randomly “off”, and even if they were
uniformly distributed, they would contribute with a nonzero mean, because the
correct result is not exactly in the center and therefore there would be more
spurious peaks on one side of it than on the other. We also cannot discard
everything farther than a certain distance (e.g. two standard deviations) from
mean or median, as these are biased for the same reason. We will use the approach
already introduced in 2.2.11: we accumulate positions of the peaks, smooth the
result with a moving average filter of length 3 (can be a lot shorter than in
Algorithm 2, as we have performed precise correction of sample rate) and discard
everything that is farther than 2 samples from argmax of this smoothed function.
Finally, we perform linear regression on the result.

This algorithm is able to extract the correct result with error of less than 0.5
samples from all three examples presented in Figure 2.20.

2.2.16 Prefiltering and whitening
The authors of [14] define a general method for normalizing the spectrum prod-
uct (FFT(f) ⊙ FFT(g)) before computing the inverse transform. With the right
normalization, we might be able to attenuate the frequencies in the signal which
cause the correlation function to be poor and amplify the useful ones. As an
example, in [15], a signal with strong power-line interference (60 Hz) is given,
resulting in crosscorrelation function with major peaks every 1/60 s. The nor-
malization then attenuates this frequency and correlation of other components of
the signal becomes visible. On the other hand, the authors of [16] have tested one
of the popular filters (SCOT, introduced in the next paragraph) and found out
that it does not perform well in a case that is potentially similar to our scenario:

For the case of a narrow band Gaussian noise signal embedded in
white Gaussian noise, the standard cross correlation method of time
delay estimation has shown significantly better performance than the
SCOT method.

Let us define Sa,b = FFT (a)FFT (b) and the generalized crosscorrelation
method as

GCC(f, g)k = IFFT(ψ ⊙ Sf,g), (2.8)
where ψ is the frequency weighting.

We have tested the following values for ψ suggested in [14]:

• (The Smoothed Coherence Transfom (SCOT)) ψ = 1/
√
Sf,fSg,g

• (The Eckart Filter) ψ = |Sf,g|(Sf,f − |Sf,g|)(Sg,g − |Sf,g|)

• (The HT Processor (HT)) ψ = |Sf,g|/|Sf,fSg,g|(1 − | S2
f,g

Sf,f Sg,g
|).

For evaluation, we took 0.7 seconds long samples (consistent with the length
of our measurement process described above) of the following signals, all of them
sampled at 2.25 MS/s:

41

• Artificially generated white noise with bandwidth 140 kHz.
• A recording of FM broadcast transmitting music with bandwidth 140 kHz.
• The same broadcast, transmitting spoken word (so intervals with silence

are present).
• The DAB broadcast with bandwidth 1.5 MHz.

First, we have worked with a simulation:

• The signal is duplicated,
• a different realization of white noise is added to each copy; the amplitude

of the noise is manually selected so the crosscorrelation function without
filtering resembles real crosscorrelation functions such as the one shown in
Figure 2.20.1,

• the resulting SNR is computed as the 90th percentile of the power of the
signal minus the minimum power of the noise floor,

• multipath distortion is simulated by filtering one of the copies with filter
[0.2, 0, 0, 0, 0, 1, 0, 0, 0, 0.1],

• filtered crosscorrelation for each of the evaluated ψ is computed, with win-
dow of length 4096 samples and decimation 1024, and with the statistical
postprocessing described in 2.2.15,

• mean square error (the square of the distance to the correct result) of the
result is computed.

Then we did the same process, but without adding the noise and multipath
distortion, with real signals received from two of our nodes.

One improvement can be made: the signal does not occupy the whole band-
width (for example the 140 kHz FM broadcast is less than one tenth of 2.25 MHz
provided by our radio), and the rest is probably just noise (or worse, residual
signals from other transmitters left in place by imperfect filtering). We therefore
force ψ to zero everywhere except for the range where the signal is assumed to
be present.

The results are shown in the following tables8. The filtered correlation func-
tions look somewhat “sharper”, but unfortunately the error of the position of
peaks is even worse than in the unfiltered case.

8The first column of each table shows STFT of the signal, with time on the vertical axis
and frequency on the horizontal; the STFT is zoomed in frequencies so only the signal is shown
(otherwise there would be huge margins). The other columns show results of crosscorrelation
when applying various filters ψ. Time offset is on the horizontal axis, just like in Figure 2.14.

42

(Simulation) Waterfall No whitening SCOT HT Eckart

D
A
B

SNR = 2 dB MSE=0.00 MSE=0.00 MSE=0.01 MSE=0.00

F
M
,
m
u
si
c

SNR = 40 dB MSE=0.04 MSE=0.31 MSE=0.64 MSE=0.27

F
M
,
sp
ee
ch

SNR = 41 dB MSE=0.01 MSE=0.92 MSE=1.84 MSE=0.39

W
h
it
e
n
oi
se

SNR = 16 dB MSE=0.20 MSE=0.23 MSE=0.35 MSE=0.28

(Real data) Waterfall No whitening SCOT HT Eckart
D
A
B

SNR = 15 dB MSE=0.01 MSE=0.03 MSE=0.25 MSE=0.96

F
M
,
m
u
si
c

SNR = 48 dB MSE=0.77 MSE=10.3 MSE=9.76 MSE=2.86

F
M
,
sp
ee
ch

SNR = 54 dB MSE=1.20 MSE=0.79 MSE=1.70 MSE=1.25

2.2.17 Dealing with Single Frequency Networks
DVB-T and other digital television and radio standards allow multiple transmit-
ters to transmit on the same frequency at the same time. Usually one region of
the size of a few thousands square kilometers is covered by a few transmitters,
all operating in one SFN. This saves the frequency spectrum and increases signal
strength. A few tricks must be employed for this to work:

• The transmitters must all transmit the signal at precisely the same time,
so buffering and synchronized time must be used.

• The modulation scheme must use slow enough symbol rate, as the symbols
from each transmitter, despite being transmitted at the same moment, ar-
rive delayed by various amount of time due to different distances and thus
different propagation delays. These delays are of course different on differ-
ent places around the covered area. For example if the transmitters are 50
kilometers apart, any rate over 1/(50km/c) = 6000Symbols/s will result in
complete overlap of consecutive symbols. DVB-T deals with this by using
an OFDM9 with thousands of carriers, each transmitting a separate stream
of symbols at a very slow rate.

• Moreover, to prevent intersymbol interference and crosstalk altogether, a
small delay with silence (called guard interval) should be inserted after each
symbol. And as the signal should not have sudden changes in its power,
it should not be such that all carriers present a symbol and then are all
switched off; the carriers must be shifted by a fraction of symbol relatively
to each other, so some transmit and some are silent at each point of time.

• The modulation scheme must be robust to narrowband interference. The
radio waves from different transmitters may produce both constructive and
destructive interference. And as the television signal is wideband and inter-
ference patterns depend on frequency, it is expected that across the channel
some frequencies would be attenuated. In DVB-T, this means that a few
carriers from the OFDM would have signal level unusable for decoding.
Agressive error correction and bit scrambling are employed so the origi-
nal bitstream can be reconstructed. Overall, the effects of this interference
should be positive, which is called SFN gain.

Figure 2.21: A part of spectrum of a received DVB-T SFN showing narrowband
destructive interference.

9orthogonal frequency division multiplex

45

From the perspective of TDOA, the SFN is seen as multiple discrete corre-
lation peaks, each corresponding to one transmitter. Fortunately, the approach
described in 2.2.15 allows us to separate one peak. We compute the time differ-
ence using the separated peak, then remove it (simply force the crosscorrelation
function to zero at that offset plus some safety padding), take the next peak and
so on. We then draw multiple hyperbolas, one for each peak. The result looks
messy and there are some false intersections, but that is probably everything we
can do. It may help to compute the solution in 3D and discard the solutions that
are not on the Earth surface.

46

3. Angle of arrival
Another approach to emitter location is determining the direction from which the
signal is coming. The transmitter then lies on the ray defined by the location of
the receiver and this angle. Then we can either use multiple receivers and find an
intersection of their rays, or move in the direction of the ray, finally approaching
the transmitter.

The advantage of AoA over TDoA is that while TDoA requires at least two
synchronized receivers to make a measurement, an AoA measurement can be
made without any remote support, and in case of non-moving transmitters, the
other rays needed for intersection can be cast anytime in the future.

AoA also has different behavior of errors: nearby targets will be located with
lower spatial error, whereas TDoA is expected to have similar error on the entire
covered area (given the strength of the signal is sufficient and the dilution of
precision is not very high). In the “approaching the transmitter” use-case, the
error of AoA is therefore expected to go to zero during the process and even
measurement with huge errors can lead to a satisfiable outcome.

Figure 3.1: Approaching the transmitter while making a systematic error of 45◦

in the angle of arrival estimation.

On the other hand, AoA can fail completely in presence of reflections and
multipath propagation (e.g. measuring near big buildings, hills or in valleys).
And regarding complexity of the setup, while we managed to build TDoA with
off-the-shelf hardware without any modifications, the methods for AoA which we
present require some modifications and custom hardware.

3.1 Directional antenna
Several geometries of antennas exhibit strong maximum (Yagi antenna, log-
periodic antenna, parabolic dish antenna) or minimum (magnetic loop antenna)
in some direction of their radiation pattern. By rotating the antenna and finding
the angle at which the intensity of the signal is maximal/minimal we get the
target direction.

47

Figure 3.2: In case of blocked direct path and presence of reflections, TDoA will
give an inaccurate result (the reflected path is a bit longer than the direct path),
whereas AoA will give a completely wrong result (the reflected signal comes from
the exactly opposite direction).

Advantage of this approach is that the directional antennas “amplify” the tar-
get signal or at least reject interference from the other directions, so even distant
or low-power targets can be received reliably. Disadvatages are two: first, the
antenna with sharp directional pattern is usually calculated and manufactured to
operate within a narrow frequency band only and parameters on other frequencies
are worse; second, this requires a rooftop mount with space for physically rotating
antenna and a motorized rotator. This mechanical part must either withstand
outside weather conditions or be housed in a bulky radome.

3.2 Antenna switching

Consider a transmitter transmitting an unmodulated sine wave and a receiver
with two antennas less than λ/2 apart (where λ is the wavelength of the signal)
which can be instantaneously switched using an antenna switch. Upon switching,
a sudden jump in phase of the wave will be observed. This phase difference will
be maximal when the antennas are in line with the transmitter and zero when
the distance from the transmitter to both antennas is the same. This leads to two
(or in some implementations four) symmetric solutions; to disambiguate them, a
third antenna is added.

48

Figure 3.3: A setup with antenna switching

In reality, the signal is modulated and most modulations are shifting the phase,
for example PSK1 or FM (where immediate changes in frequency demonstrate
themselves as changes in phase). We therefore do not know how much of the
phase change during antenna switch comes from the switch itself and how much
of it comes from the transmitter changing its phase/frequency because of the
modulation. This can be sorted out by making thousands of switches over a few
seconds and averaging the result — the phase changes of the remote transmitter
are likely to be uncorrelated with our switching and will average out to zero.

Another problem arises when implementing this approach on a SDR without
auxiliary signal input (c.f. 2.1.5), as we need to determine the moment when the
switch happened to compare the phase before and after. Authors of [17] and [18]
deal with this by switching at a known frequency of a few kHz, demodulating
the signal with a quadrature2 demodulator (jumps in phase produce peaks in
the demodulated signal) and then selecting this known frequency with a narrow
band-pass filter. The amplitude of the filtered signal corresponds to the height
of the impulses, which corresponds to the magnitude of phase discontinuities in
the input signal.

Then, as we want to disambiguate the symmetric solutions, we need to employ
a third antenna, make a few switches between antenna #1 and #2 and then
between #2 and #3 and again need to somehow infer from the recorded samples
which impulses belong to which pair of antennas. As mentioned earlier, the stream
from the radio is only coarsely synchronized with the “outside world” including
the antenna switcher. Therefore, we either need to put the transitions between
the pairs of antennas far apart enough, or perform the switching in some unique
pattern which we can later recognize.

The next problem is that we cannot receive the target (as we are perhaps
interested in the contents of the transmission) and make the measurement at

1Phase Shift Keying
2Regarding the nomenclature of “FM” and “quadrature” demodulator: under FM demod-

ulator we understand a quadrature demodulator followed by a deemphasis filter. For this
application the distinction is not important, though.

49

Figure 3.4: A block diagram of the device presented in [18].

once, as these jumps in phase will usually make successful reception impossible.
This can be fixed by either getting a second radio which will not have the antenna
switched or maybe by somehow cancelling the jumps in phase once they are
detected.

And, finally, as the recording incorporates the switching signal, one of the
main advantages of software-defined radio — that the “raw” recording is saved
and can be processed later by various means — is lost as the switching sequence
must be decided prior to the recording and cannot be changed later.

There is one particular use-case where these problems manifest very strongly:
a network using TDMA3 where we want to locate individual transmitters.

• The transmission happens only in one timeslot out of N (usually 4 or 8)
plus there is spacing between the timeslots and so there will not be enough
signal to perform the averaging of the phase discontinuities.

• The timeslosts are short and the narrow band-pass filter for filtering the
results is longer (in the sense of number of taps) than the timeslot.

• The transmission is short and so there is no time to perform the changing
of antenna pairs.

• To detect where the timeslot starts, the signal has to be correctly decoded.
As the start of the timeslot is a precise time information, the add-on radio
needs to be synchronized to the radio taking the measurement, which poses
additional difficulty.

We have implemented an early proof-of-concept prototype of this approach,
but after facing the problems discussed above, we have decided to abandon it.

3.2.1 Coherent receivers
We will get rid of the antenna switcher by connecting each antenna to a separate
receiver and then feeding all the receivers from a common clock source. This way,
the individual streams will be synchronous and we can then simply compare the
phases of the received signals.

3Time Division Multiple Access

50

Geometry of coherent receivers

Assuming the transmitter is far away (distance to the transmitter ≫ d) and d <
λ/2, the coming wavefront generates a phase difference between the signals from
the two receivers ϕ = f/λ (in units “fraction of a unit circle” rather than radians).
From this we have

cosα = f

d
= ϕλ

d
,

α = arccos ϕλ
d
.

(3.1)

3.2.2 Implementation
We have desoldered oscillators from all the involved rtl-sdrs except one and con-
nected pins number 9 (the clock input) of the R820T chips on all radios together.
Now all the SDRs sample synchronously and by using crosscorrelation we can
determine the initial offset caused by different moment of initialization. How-
ever, their phase offset (ϕ in (2.2)) is not the same because their PLLs4 acquired
lock at different times, and we cannot use the “transmitter with known location”
trick because retuning to different frequency unlocks and re-locks the PLL and
finally we end up with a different unknown offset. The solution used by [19] is to
connect the SDRs to a common noise source, compute crosscorrelation (or just a
dot product if the sample offset has already been corrected) and use the phase of
the result as the correction factor. High-frequency high-bandwidth noise can be
obtained by tapping the USB data lines with a small capacitor. The switching
is then done by SA630 switches. One switch is used for each radio (switching

4phase-locked loop

51

between antenna and a common line) and another switch is used to switch this
common line between ground and USB noise. This is done to reduce crosstalk
and improve noise isolation because SA630 has the worst-case isolation of only
24 dB.

We have created a printed-circuit board for three SDRs.

Figure 3.5: A PCB with 4 switches for 3 SDRs.

The length of the trace feeding noise is not the same to all SDRs. And when
connecting the antennas, the lengths of the coaxial cables may slightly differ.
Therefore we introduce a calibration process, where the user points each pair
of the antennas perpendicular to a known signal source (α = 90◦, the phase
difference should be zero) and the measured phase is saved. When making a real
measurement, this saved phase is subtracted from the measured phase.

The quality of the RF part

Figure 3.6: The default rtl-sdr antenna

The first prototype used a hand-drawn single-sided PCB and the antennas that
come with rtl-sdr. We have immediately noticed that even with switches switched

52

to the noise source, there is a huge leak of signals from the outside. It had to be
fixed in several ways:

• The board is now double-sided, with the bottom side (filled mostly with
ground plane) acting as shielding. The board is made by photo-printing for
higher precision.

• The sides of the board are wrapped in a copper foil, shorting ground planes
of the top and the bottom side.

• The device is put in a metal box for shielding.

The second problem was with antennas. We have noticed that the measured
phase shift depends on the shape and twisting of the coaxial cables that feed the
antennas. We hypothesize that this is caused by the antennas having absolutely
no symmetrization, so the incoming radio wave resonates over the cable shielding.
Replacing it with a ground-plane antenna fixed the problem and the readings then
seemed reasonable.

Dilution of precision

Similarly to 2.1.4, the result is unstable near the maxima and minima of the phase
difference (intuitively, the absolute value of the derivative of the arccos function
is high near the edges). As we have three antennas and therefore get three phase
differences, we can discard the one that is neares to the edge and compute the
result using the remaining two.

Remarks regarding the electronics design

We need a logic signal controllable from the computer to control the antenna
switches. Due to the shortage of exposed GPIO5 pins on modern computers, we
can either use the integrated I2C bridge in rtl-sdr and an I2C logic expander,
or just put a cheap Arduino clone aside. We have chosen the second option for
simplicity.

USB cannot deliver enough power for three radios. An external power supply
had to be added.

5General-Purpose Input/Output

53

54

Conclusion

TDOA
Can a TDOA multilaterator be built using consumer-grade hardware? Appar-
ently, after implementing the described quirks to overcome unstable clock source
in the radios, yes. And surprisingly for us, the main limitation was not precise
timing synchronization, but poor autocorrelation functions of some signals (and
low SNR and selectivity of the radio used).

Future work
How could be our work further improved?

• Upgrading to better SDRs with higher dynamic range and better robustness
to interference from strong transmitters might allow locating even weak
transmitters and transmitters that are not on elevated places — for example
uplink channel from mobile phones and walkie-talkies could be traced. This
should be relatively easy to implement, as almost all logic dealing with
specifics of rtl-sdr is concentrated in rtl.c, which could be re-implemented
for other SDRs.

• Additionally, with an SDR that is able to receive frequencies in the mi-
crowave range, it might be possible to receive pulses from airborne radars
and therefore passively track airplanes with a secondary responder turned
off (but radar turned on).

• The speed of the software could be improved: the correlator could run in
multiple threads and generation of the plots could be more efficient (cur-
rently, most of the time is spent in generating the images). The complete
report currently takes about a minute to generate on a middle-end com-
puter.

• A more precise resampler may improve subsample accurracy.

AOA
Implementing AOA direction finder proved challenging and difficult to debug
with respect to RF design. Despite the described efforts, the measured angle
sometimes goes completely wrong for a while. This may be caused by spurious
radio reflections in the environment and inside the device. Future work should
concentrate on having matched impedance along the entire signal path and overall
improvement of the physical design.

55

56

Bibliography
[1] James E. Palmer, H. Andrew Harms, Stephen J. Searle, and Linda M. Davis.

DVB-T Passive Radar Signal Processing. Trans. Sig. Proc., 61(8):2116–2126,
April 2013.

[2] Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Du-
rand. Capturing the human figure through a wall. ACM Trans. Graph.,
34(6):219:1–219:13, October 2015.

[3] David Klusáček. New Methods in Statistical Speech Recognition. https:
//dspace.cuni.cz/handle/20.500.11956/41647, 2012. Accessed: 2018-
04-27.

[4] Mutability Ltd. Mode S multilateration server. https://github.com/
mutability/mlat-server, 2015. Accessed: 2018-12-20.

[5] Josef Gajd̊ušek. Pasivńı radiolokátor. https://maturita.atx.name/, 2017.
Accessed: 2018-12-20.

[6] Stefan Scholl. Experimental Matlab Scripts for Evaluation of a
TDOA System based on RTL-SDRs. https://github.com/DC9ST/
tdoa-evaluation-rtlsdr, 2017. Accessed: 2018-12-21.

[7] G. N. Varma, U. Sahu, and G. P. Charan. Robust frequency burst detection
algorithm for GSM/GPRS. 6:3843–3846 Vol. 6, Sep. 2004.

[8] Rafael Microelectronics, Inc. R820T High Performance Low Power Advanced
Digital TV Silicon Tuner Datasheet, 2011.

[9] Tim Head, MechCoder, Gilles Louppe, Iaroslav Shcherbatyi, fcharras, Zé
Vińıcius, cmmalone, Christopher Schröder, nel215, Nuno Campos, Todd
Young, Stefano Cereda, Thomas Fan, rene rex, Kejia (KJ) Shi, Justus
Schwabedal, carlosdanielcsantos, Hvass-Labs, Mikhail Pak, SoManyUser-
namesTaken, Fred Callaway, Löıc Estève, Lilian Besson, Mehdi Cherti,
Karlson Pfannschmidt, Fabian Linzberger, Christophe Cauet, Anna Gut,
Andreas Mueller, and Alexander Fabisch. scikit-optimize/scikit-optimize:
v0.5.2, March 2018.

[10] Jan Hrach. Frequency Spectrum Monitoring System. https://dspace.
cuni.cz/handle/20.500.11956/80128, 2016.

[11] Wikipedia contributors. Haversine formula — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Haversine_
formula&oldid=892532744, 2019. [Online; accessed 2-May-2019].

[12] Wikipedia contributors. Hyperbola — Wikipedia, the free encyclopedia,
2019. [Online; accessed 2-May-2019].

[13] George A. Mizusawa. Performance of hyperbolic position location techniques
for code division multiple access. 1996.

57

https://dspace.cuni.cz/handle/20.500.11956/41647
https://dspace.cuni.cz/handle/20.500.11956/41647
https://github.com/mutability/mlat-server
https://github.com/mutability/mlat-server
https://maturita.atx.name/
https://github.com/DC9ST/tdoa-evaluation-rtlsdr
https://github.com/DC9ST/tdoa-evaluation-rtlsdr
https://dspace.cuni.cz/handle/20.500.11956/80128
https://dspace.cuni.cz/handle/20.500.11956/80128
https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=892532744
https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=892532744

[14] C. Knapp and G. Carter. The generalized correlation method for estimation
of time delay. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 24(4):320–327, August 1976.

[15] G. C. Carter, A. H. Nuttall, and P. G. Cable. The smoothed coherence
transform. Proceedings of the IEEE, 61(10):1497–1498, Oct 1973.

[16] K. Scarbrough, N. Ahmed, and G. Carter. An experimental comparison
of the cross correlation and SCOT techniques for time delay estimation.
In ICASSP ’80. IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 5, pages 807–810, April 1980.

[17] WA2EBY Mike Kossor. A Doppler Radio-Direction Finder. 1999.

[18] RasHAWK: Distributed EM Situational Awareness Based on Raspberry Pi
and REDHAWK. 2014. Accessed: 2018-12-20.

[19] tejeez. Synchronized RTL-SDR receivers and direction finding. https://
github.com/tejeez/rtl_coherent, 2015. Accessed: 2018-12-28.

58

https://github.com/tejeez/rtl_coherent
https://github.com/tejeez/rtl_coherent

A. TDOA: user guide

A.1 Installation
The software is divided into two parts: the recorder, which must be installed on
the nodes, and the correlator, which must be installed on the central server.

We will be cloning the software from git repositories; snapshots of the repos-
itories can be found in the supplementary material.

List of dependencies required: volk, fftw3, python3, numpy, scipy, cffi and
bottle. The controlling server additionally requires sqlite3 and matplotlib.

A.1.1 Recorder
First, the patched rtl-sdr (which allows setting of gains (2.2.8) and disables dither-
ing (2.2.3)) needs to be installed. Refer to the official rtl-sdr documentation for
more details.

$ git clone https://jenda.hrach.eu/p/rtl-sdr && cd rtl-sdr
$ git checkout no_dither
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX=/opt/rtl-sdr ..
$ make && sudo make install

Next we need kalibrate-everything (2.2.7).

$ git clone https://jenda.hrach.eu/p/kalibrate-everything
$ cd kalibrate-everything
$ make && sudo make install

Finally we compile the recorder.

$ git clone https://jenda.hrach.eu/p/rtl-tdoa && cd rtl-tdoa/recorder
$ make RTLSDR_PATH=/opt/rtl-sdr

A.1.2 Correlator (the controlling server)

$ git clone https://jenda.hrach.eu/p/rtl-tdoa && cd rtl-tdoa
$ make

We also need to initialize an empty database.

$ cat schema.sql | sqlite3 tdoa.sqlite

59

A.2 Configuration
All the data and configuration is held in a SQLite database tdoa.sqlite. First,
you will need to configure your nodes. Open table nodes and add a record for
every node:

• name: some human-readable ID
• url: the API endpoint under which the node is available, e.g.

http://127.0.0.1:8080

• lat,lon: location of the node
• gsmfreq: frequency of a nearby BTS (used for calibration); use for example

kalibrate-rtl with the -s (scan) parameter to find one
• device index: index of the radio to be used; if you have only one radio

connected, enter 0

• ppm: initial error of the oscillator
• samplerate: sample rate, must be a multiple of 250000. 2000000 or 2250000

is recommended. Currently all nodes in the system need to have the same
sample rate.

Next, you need to configure transmitters in the ctu table. You must add at
least one transmitter to be used as a reference, but we recommend adding more
transmitters as locating a known transmitter will show you useful debug info.
Try searching the website of your local regulatory authority; maybe they release
a table that can be conveniently imported. The following fields are important:

• loc,name: human-readable description of the transmitter location and name
• freq: frequency
• type: the type of the transmitter, e.g. DAB. The bandwidths table must

contain the bandwidth of it.
• lat,lon: location of the transmitter

A.3 Taking a measurement (CLI version)
The program for controlling the nodes, tdoa.py, can be either used on a command
line, or imported as a Python module. We will use the command-line interface
here. Run ./tdoa.py help for a description of available commands.

Start the recorder (./record.py) on all nodes. By default it listens to the
world; add an IP address as an optional argument to limit listening only on this
address. Then try running ping on the master server:

$./tdoa.py ping

You should receive pong from all nodes. The next thing we should do is to start
the radios on all nodes:

$./tdoa.py start

60

To run more commands in one invocation, separate them with comma. Let’s
make a recording at 100.5 MHz using the DAB transmitter ID 1925 (ID from the
table ctu) at 227.36 MHz as a reference:

$./tdoa.py calibrate, optimize_gain 227360000 adcrange,
optimize_gain 100500000 adcrange, calibrate, record 1925 100500000

An ID of the recording will be returned. We can now compute correlations, for
example for a transmitter ID 1633 at 101.1 MHz (i.e., an offset of 600 kHz) with
bandwidth 140 kHz:

$./tdoa.py correlate <the_returned_id> 600000 140000 -g 1633

You can run multiple correlations for one recording — for example should there
be another transmitter at 100.7 MHz, we would also run ./tdoa.py correlate
the id 200000 140000.

To view the measurement protocols, view protocols/index.html in your
browser.

A.4 Taking a measurement (library version)
To use the TDOA client as a Python 3 module, import and instantiate the tdoa
object.

from tdoa import tdoa
t = tdoa()

There are functions with the same name and similar parameters as the com-
mands described in A.3:

t.ping()
t.start()
t.calibrate()
t.optimize_gain(reference_freq, "adcrange")
t.optimize_gain(target_freq, "adcrange")
record_id = t.record(reference_id, target_freq)
t.correlate(record_id, offset, bandwidth, ["-g", gold_id])

Refer to docstrings in the module for a more elaborate parameter description.
The sample script collect stuff.py uses the library to locate all transmitters
selected from the database.

61

B. TDOA: technical information

B.1 Locking
Commands to the nodes should not be issued by two clients at once, as one might
instruct the node to tune to one frequency and another to some other frequency.
We prevent accidental execution of two clients (on one machine) by creating a
lockfile; no attempts are made to synchronize concurrent clients from different
machines, as the protocol has been designed out of the neccessity of master-slave
communication and we do not consider multi-master situation an important use-
case.

The CLI client handles locking automatically. Users of the Python library
should call acquire lock and release lock.

B.2 Playing with gain
The tool recorder/gain.py allows you to manually set all gains of rtl-sdr and
display the resulting spectrum and histogram in real time. Run gain.py <freq
in MHz> <error in ppm> and then press w/e, s/d and x/c to adjust gains, a to
switch autogain, q to quit. The tool prints current settings and esimated SNR
(as the difference of minimum and maximum in the spectrum).

Figure B.1: gain.py

B.3 Recorder API
The recorder has the following API endpoints used by the tdoa.py tool. To make
a recording they should be called in this order, though of course it is not needed
to call /ping and /start repeatedly.

62

/ping
Test that the node is alive.

parameters none
returns pong (running) or pong (not running) depending on

whether a /start command has already been issued

/start
Initialize and start the SDR.

parameters data: a JSON dictionary with fields device index, ppm,
samplerate and gsmfreq

returns OK or Device already running

/calibrate
Determine the oscillator error by listening to a GSM base station.

parameters none
returns decimal number: the measured error in parts per million

/setgain
Determine the correct gain

parameters data: a JSON dictionary with fields freq (the center fre-
quency), method (the string adcrange, force or random; the
methods adcrange and random are described in 2.2.8); for
the method random flist, a frequency list where the utility
function should be evaluated; for method force a list of four
integers, the first three are SDR gains (0 to 15), the last one
0 or 1 means autogain

returns a JSON list of four ints: the three gains and autogain status

Frequency list format

List of integers in the form of offset freq1, bandwidth1, offset freq2, band-
width2, ... For example 200000 100000 -400000 100000 means two 100 kHz
signals, one at +200 kHz and one at -400 kHz.

/gaincache
Retrieve the determined gains.

parameters none
returns dictionary mapping frequency to list of 4 integers (gain set-

tings + autogain)

63

/record
Perform a recording of target-reference-target. /setgain has to be called for both
of these frequencies prior to /record.

parameters data: a JSON dictionary with fields tt (the UNIX times-
tamp of the start of the recording), reference (reference
frequency), target (the target frequency) and ppm (the os-
cillator error)

returns raw samples from the rtl-sdr ADC (approx. 8 MB of data)

B.4 Database schema

Terminology
Recording is the event when all nodes in the system record target-reference-target
from a given timestamp. Measurement is the computed time difference between
a pair of nodes (ttgt − tref from (2.4)).

Table: recordings
One row for each recording.

id primary key
date when the recording was started
reference id foreign key ctu(id), the reference transmitter used
target freq the frequency of the target
comment optional text comment

Table: files
One row for each file, multiple files for each recording (e.g. 4 files in a system
with 4 nodes).

id primary key
recording foreign key recordings(id)
filename the file where raw data of the recording are stored
lat, lon location of the node where the data have been recorded
samplerate sample rate of the recording
ppm frequency error of the recording
meta arbitrary metadata, currently the determined gain

Table: measurements
One row for each pair of files (e.g. 6 rows in a system with 4 nodes).

64

id primary key
file1 foreign key files(id), the first file entering the crosscorre-

lation
file2 foreign key files(id), the second file entering the crosscor-

relation
offset frequency offset of the target
delta the computed TDOA value
targetsd standard deviation of the correlation peaks positions of the

target
referencesd standard deviation of the correlation peaks positions of the

reference
golddelta, gold-
lat, goldlon

the correct values if known (e.g. we are locating a known
transmitter to test the accuracy of the system)

sfn number of correlation in a single frequency network (0 if this
is not a SFN)

log text log of the correlator

65

C. TDOA: Results
We have measured all commercial VHF and UHF broadcasting TV and radio
stations for which a reasonable reception in Prague can be obtained: all FM
broadcast stations in Prague and a few surrounding cities (such as Kralupy nad
Vltavou) and strong DVB-T/DAB transmitters around Bohemia (such as Ještěd,
Milešovka, Úst́ı nad Labem and Pardubice-Krásné). Even in these cases, despite
the extreme dilution of precision, the results are not completely off. On the other
hand, FM broadcasting suffers from inferior crosscorrelation function; about half
of the locations are successfully determined, the other half fail completely. We
believe this may have multiple causes:

• multiple transmitters in the same band, leading to interference due to poor
selectivity of our receiver

• the analogue and low-bandwidth nature of the signal
• bending and reflections of lower frequencies which FM broadcast uses (88 to

108 MHz compared to 200 MHz for DAB and 500 to 750 MHz for DVB-T)

Figure C.1: Example of measuring a DAB transmitter at 1.5 GHz at Praha-
Strahov (1 kW ERP).

66

Figure C.2: Example of measuring a DVB-T transmitter in Krkonoše mountains
from Prague (110 km, 100 kW ERP).

Figure C.3: Example of measuring a FM transmitter in Prague (1 kW ERP).

67

Figure C.4: Example of a crosscorrelation failing completely. The correct result
is marked as a black line.

Figure C.5: Scatter plot of error and distance between the target and the receiver
across all our measurements, recomputed as if DoP was 1.

Figure C.6: Scatter plot of error and SNR (as the 90th percentile of target power
− noise floor).

The measurement protocols generated by our software are available in elec-
tronic form at https://popelka.ms.mff.cuni.cz/˜hrach/tamarka/ and in the
electronic attachment to this thesis. Futhermore, an example one is shown below.

68

TDOA measurements at 102900 kHz

Legend

Spectrum:

Green: zero offset
Red: target signal

Waterfall:

Correlation function:

Mouse over to show the fitted result
White (on the very left): this correlation has been used (no retuning && sufficient fitness)
Yellow on the left: fitness function (grows to the right)
Cyan lines: lines fitted through the reference and target transmitters
Yellow dots: correlation peaks that were used
Red line: gold result (if the position of the target is known)

You will find the map at the bottom of the page. (jump there)
correlation 4286 2019-04-20T23-10-33_103700000_pankrac 2019-04-20T23-10-33_103700000_brmlab
gain [9, 9, 9, 1] [6, 6, 6, 1]
samplerate 2250000 2250000 Hz
histogram

ref: tgt: ref: tgt:
ref. spectrum

tgt. spectrum

tgt. filtered

target_freq 103700000 Hz
reference DAB Final Lic: VYSÍLACÍ SÍŤ A, PRAHA MESTO, 227360 kHz
result 38.165 stddev = 0.005 reference, 0.489 target [samples]; known correct: 41.884

Waterfall 1 Correlation function Waterfall 2

TDOA measurements at 102900 kHz

Correlator log

2019-04-20T23-10-33_103700000_pankrac <--> 2019-04-20T23-10-33_103700000_brmlab (pass 1)
reference error = -0.355672 ppm, target error = -0.028515 ppm
Measured dist: 37.821271 target fitness: 2.421252 stddevs: 1.697929 target, 0.096580 reference
gold result: 41.883851

2019-04-20T23-10-33_103700000_pankrac <--> 2019-04-20T23-10-33_103700000_brmlab (pass 2)
snr: 35.1 33.4 dB
reference error = -0.006011 ppm, target error = -0.034774 ppm
Measured dist: 38.164853 target fitness: 2.428682 stddevs: 0.488949 target, 0.004685 reference
gold result: 41.883851

correlation 4287 2019-04-20T23-10-33_103700000_pankrac 2019-04-20T23-10-33_103700000_brevnov
gain [9, 9, 9, 1] [7, 7, 7, 1]
samplerate 2250000 2250000 Hz
histogram

ref: tgt: ref: tgt:
ref. spectrum

tgt. spectrum

tgt. filtered

target_freq 103700000 Hz
reference DAB Final Lic: VYSÍLACÍ SÍŤ A, PRAHA MESTO, 227360 kHz
result -24.822 stddev = 0.004 reference, 1.701 target [samples]; known correct: -23.634

Waterfall 1 Correlation function Waterfall 2

TDOA measurements at 102900 kHz

Correlator log

2019-04-20T23-10-33_103700000_pankrac <--> 2019-04-20T23-10-33_103700000_brevnov (pass 1)
reference error = -0.023190 ppm, target error = -0.101945 ppm
Measured dist: -24.880483 target fitness: 1.649411 stddevs: 1.710155 target, 0.007583 reference
gold result: -23.634450

2019-04-20T23-10-33_103700000_pankrac <--> 2019-04-20T23-10-33_103700000_brevnov (pass 2)
snr: 35.1 27.7 dB
reference error = 0.000075 ppm, target error = -0.122573 ppm
Measured dist: -24.821637 target fitness: 1.650235 stddevs: 1.701024 target, 0.003787 reference
gold result: -23.634450

correlation 4288 2019-04-20T23-10-33_103700000_pankrac 2019-04-20T23-10-33_103700000_luna
gain [9, 9, 9, 1] [12, 12, 12, 1]
samplerate 2250000 2250000 Hz
histogram

ref: tgt: ref: tgt:
ref. spectrum

tgt. spectrum

tgt. filtered

target_freq 103700000 Hz
reference DAB Final Lic: VYSÍLACÍ SÍŤ A, PRAHA MESTO, 227360 kHz
result 33.116 stddev = 0.007 reference, 0.516 target [samples]; known correct: 34.954

Waterfall 1 Correlation function Waterfall 2

TDOA measurements at 102900 kHz

Correlator log

2019-04-20T23-10-33_103700000_pankrac <--> 2019-04-20T23-10-33_103700000_luna (pass 1)
reference error = 0.318073 ppm, target error = 0.071670 ppm
Measured dist: 33.467982 target fitness: 2.393485 stddevs: 1.390640 target, 0.086432 reference
gold result: 34.954401

2019-04-20T23-10-33_103700000_pankrac <--> 2019-04-20T23-10-33_103700000_luna (pass 2)
snr: 35.1 22.2 dB
reference error = -0.015208 ppm, target error = 0.005130 ppm
Measured dist: 33.115504 target fitness: 2.397069 stddevs: 0.516244 target, 0.007361 reference
gold result: 34.954401

correlation 4289 2019-04-20T23-10-33_103700000_brmlab 2019-04-20T23-10-33_103700000_brevnov
gain [6, 6, 6, 1] [7, 7, 7, 1]
samplerate 2250000 2250000 Hz
histogram

ref: tgt: ref: tgt:
ref. spectrum

tgt. spectrum

tgt. filtered

target_freq 103700000 Hz
reference DAB Final Lic: VYSÍLACÍ SÍŤ A, PRAHA MESTO, 227360 kHz
result -64.254 stddev = 0.005 reference, 1.577 target [samples]; known correct: -65.518

Waterfall 1 Correlation function Waterfall 2

TDOA measurements at 102900 kHz

Correlator log

2019-04-20T23-10-33_103700000_brmlab <--> 2019-04-20T23-10-33_103700000_brevnov (pass 1)
reference error = 0.346987 ppm, target error = 0.025114 ppm
Measured dist: -63.724084 target fitness: 1.695357 stddevs: 2.040406 target, 0.094202 reference
gold result: -65.518301

2019-04-20T23-10-33_103700000_brmlab <--> 2019-04-20T23-10-33_103700000_brevnov (pass 2)
snr: 33.5 27.7 dB
reference error = -0.011536 ppm, target error = -0.036625 ppm
Measured dist: -64.254136 target fitness: 1.698083 stddevs: 1.577111 target, 0.005198 reference
gold result: -65.518301

correlation 4290 2019-04-20T23-10-33_103700000_brmlab 2019-04-20T23-10-33_103700000_luna
gain [6, 6, 6, 1] [12, 12, 12, 1]
samplerate 2250000 2250000 Hz
histogram

ref: tgt: ref: tgt:
ref. spectrum

tgt. spectrum

tgt. filtered

target_freq 103700000 Hz
reference DAB Final Lic: VYSÍLACÍ SÍŤ A, PRAHA MESTO, 227360 kHz
result -4.996 stddev = 0.011 reference, 0.469 target [samples]; known correct: -6.929

Waterfall 1 Correlation function Waterfall 2

TDOA measurements at 102900 kHz

Correlator log

2019-04-20T23-10-33_103700000_brmlab <--> 2019-04-20T23-10-33_103700000_luna (pass 1)
reference error = 0.707390 ppm, target error = 0.011993 ppm
Measured dist: -3.425755 target fitness: 2.486794 stddevs: 2.967850 target, 0.191185 reference
gold result: -6.929450

2019-04-20T23-10-33_103700000_brmlab <--> 2019-04-20T23-10-33_103700000_luna (pass 2)
snr: 34.1 22.2 dB
reference error = -0.034429 ppm, target error = -0.063983 ppm
Measured dist: -4.996376 target fitness: 2.489684 stddevs: 0.468869 target, 0.010827 reference
gold result: -6.929450

correlation 4291 2019-04-20T23-10-33_103700000_brevnov 2019-04-20T23-10-33_103700000_luna
gain [7, 7, 7, 1] [12, 12, 12, 1]
samplerate 2250000 2250000 Hz
histogram

ref: tgt: ref: tgt:
ref. spectrum

tgt. spectrum

tgt. filtered

target_freq 103700000 Hz
reference DAB Final Lic: VYSÍLACÍ SÍŤ A, PRAHA MESTO, 227360 kHz
result 58.700 stddev = 0.006 reference, 1.654 target [samples]; known correct: 58.589

Waterfall 1 Correlation function Waterfall 2

TDOA measurements at 102900 kHz

TDOA measurements at 102900 kHz

D. AOA: user guide
List of dependencies required: volk, python3, numpy, scipy and pygame.

First, we need a patched rtl-sdr, the same that has been used in Appendix A.

$ git clone https://jenda.hrach.eu/p/rtl-sdr \&\& cd rtl-sdr
$ git checkout no_dither
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX=/opt/rtl-sdr ..
$ make && sudo make install

Next, clone and compile the program:

$ git clone https://jenda.hrach.eu/p/rtl-aoa \&\& cd rtl-aoa
$ make RTLSDR_PATH=/opt/rtl-sdr

Edit the common section of the configuration file sdr.ini to your needs.
Run ./rtl-aoa.py /dev/ttyUSB0 (or other device node assigned on your

computer). After the initial phase is measured, you should see the following
window:

Figure D.1: rtl-aoa.py. The left dial shows angles from each antenna pair, the
right dial shows the final computed direction, and the graphs on the bottom show
spectrum of the signal received by all three radios.

Press c to enter the calibration mode. The measured phase offsets will be
written to the standard output. Consecutively align each antenna pair perpen-
dicularly with the signal source and note the measured phase. Then write these
phases to sdr.ini and restart the program.

76

	Introduction
	Introduction to digital signal processing
	Signal model, from real to complex
	Frequency shift and time reversal
	Convolution and FIR filters
	Filtering

	Discrete Fourier transform and windowing
	DFT and its inverse
	Windowing

	Crosscorrelation
	Efficient computation of correlation using Fourier transform
	Implementation, benchmark

	Time difference of arrival
	Theory
	Basics
	Geometry considerations on a round planet
	Behavior of DSP operations in a multi-receiver situation
	Dilution of precision
	Precise clock synchronization
	Previous work

	Implementation
	Hardware and software
	Feasibility
	PLL dithering
	The measurement process
	Coarse synchronization with NTP
	Power on and then sample continuously
	Calibration
	Adjusting the gain
	Recording
	Resampling and frequency shifting
	Coarse synchronization by long correlations
	Computing fine correlations
	Extracting the time difference
	Plotting hyperbola to a map
	Fixing non-optimal correlation functions
	Prefiltering and whitening
	Dealing with Single Frequency Networks

	Angle of arrival
	Directional antenna
	Antenna switching
	Coherent receivers
	Implementation

	Conclusion
	Bibliography
	TDOA: user guide
	Installation
	Recorder
	Correlator (the controlling server)

	Configuration
	Taking a measurement (CLI version)
	Taking a measurement (library version)

	TDOA: technical information
	Locking
	Playing with gain
	Recorder API
	Database schema

	TDOA: Results
	AOA: user guide

