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Introduction

Making Software Dumber

• This talk will discuss some of the ideas we've explored while thinking 
about trying to make more generic fuzzers.

• While a lot of fuzz related research has focussed on making fuzzing 
tools more aware of the protocol their attacking, some of us have felt 
that this may be the wrong direction

– We want to make very generic fuzz testing tools that can apply to 
lots of software.

– We've been calling this “Making software dumber”, as opposed to 
making fuzzers smarter.
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Introduction

Fuzz Testing

• In it's purest form, entirely blind to context and underlying protocol.

• Historically, this approach has proven to be remarkably successful.

• However, it is self-evident that this approach remains limited to 
software expecting only minimally structured input.

• Applying the core principles of fuzz testing to a broader range of 
software and improving it's overall efficacy continues to be an active 
research topic.
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Introduction

Block Based Fuzzing

• Perhaps the earliest attempt at introducing structure to fuzz testing.

– Pre-define the data structures (i.e. blocks) involved in the protocol 
being tested.

– The blocks are then assembled and mutated in such a way that the 
basic structure is maintained, while the contents and stream are 
randomly modified.

• The most notable example, of course, was SPIKE.

• SPIKE et al. began to vastly extend the reach of fuzz testing to 
structured protocols and formats (HTTP, RPCs, XML, etc).
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Introduction

Model Inference Assisted Fuzzing

• An extension to block based fuzzing, Model Inference Assisted 
Fuzzing Introduces protocol awareness in order to extend the reach of 
fuzz testing to vastly more complex programs

– Predefined protocol grammar serves as a complete specification for 
the protocol (or format) to be tested.

– The fuzzer is then able to generate tests that deviate subtly from 
those specifications

• Model inference assisted fuzzers continue to expose serious 
implementation flaws.

• Perhaps the most notable example is PROTOS.
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Introduction

Model Inference Assisted Fuzzing

• Model inference assisted fuzzing is obviously a considerable leap 
forward from naïve protocol-blind fuzzing.

• However, reliance on accurate protocol specifications presents a 
number of problems

– Expensive setup cost required to construct the requisite grammar. 
Some specifications provide usable grammar in Backus-Naur or 
similar form, but this is an exception rather than a rule.

– Only possible to model specifications documented by the vendor, 
potentially ignoring any undocumented or proprietary extensions.

– High likelihood of ignoring vast amounts of attack surface, or testing 
large amounts of unimplemented specifications (consider testing a 
http daemon that doesn't support DAV based purely on the 
specification).
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Introduction

Possible Solution: Feedback Driven Fuzzing?

• Feedback driven fuzzing attempts to learn how to explore a program 
dynamically (typically) using code coverage and sample inputs.

– Generally either use compiler instrumentation (such as 
-finstrument-functions in gcc) or DBI.

–  The three major DBI frameworks are PIN from Intel, DynamoRIO 
from Determina/VMware, and VEX/Valgrind from Julian Seward et 
al, But others have used home-brew techniques (generally IDA
+patching basic block boundaries with software breakpoints).

• Bunny-the-fuzzer (lcamtuf) and EFS (DeMott) are two notable 
examples.

• Feedback driven fuzzing has proven to be effective, and continues to 
be an exciting research area.
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Introduction

Alternative Inference Sources

• We're convinced model inference assisted fuzzing is useful, but we 
wanted comparative results without the expensive (in terms of effort) 
initial investment.

• We developed an alternative solution that can be almost entirely 
automated with minimal human interaction.

– We have been able to apply this to explore proprietary, and 
undocumented software functionality

– Identify edge cases that require special attention, and automatically 
generate (surprisingly) good quality regression test suites.

– We successfully used this method to find multiple real life security 
problems in a large number of unrelated products.
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Design

Feedback Driven Fuzzing

• So, Inspired by ideas such as Protos, EFS, Bunny, SAGE, and others, 
We wanted to build code coverage feedback into our fuzzing.

• Initially we simply hooked gcc's built in gcov instrumentation support 
which modifies every basic block to increment a counter we can 
monitor. It's not a supported interface, but suited our needs well.

• This worked, but requires us to have the source for every application 
we want to test.

• Using DBI, we can apply the same logic to any application but do not 
require the source code.

• Additionally as the major DBI frameworks are cross platform, we get 
Windows support for free.



Google Confidential 11

Design

Corpus Distillation

• Inspired by model inference assisted fuzzing, corpus distillation 
eliminates the requirement for protocol grammar via automated 
observation of the software to be tested.

• We realised that the input to any program could be considered a set 
of elements from the finite universe of source code lines (or basic 
execution blocks) that form the program you're testing.

• In this manner, the input X is the subset of lines from program P that 
have been executed one or more times for P(X).

• SAGE From Microsoft Research had similar goals, but a vastly 
different approach (and more complete, but we address this later).



Google Confidential 12

Design

10  bool decode(FILE *infile)
11  {
12      png_structp png_ptr;
13      png_infop info_ptr;
14      png_ptr = png_create_read
15      info_ptr = png_create_inf
16      png_set_crc_action(png_pt
17      if (setjmp(png_jmpbuf(png
18          png_destroy_read_stru
19          fclose(infile);
20          return false;
21      }
22      png_init_io(png_ptr, info
23      png_read_png(png_ptr, inf
24      png_destroy_read_struct(&
25      fclose(infile);
26      return true;    

• If executing this input results in these 
source code lines being executed, we 
consider this input the set of these lines, and 
ignore it's contents.

• Now, simple set theory allows us to 

manipulate our corpus in interesting ways.
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Design

Corpus Distillation

• Application of our technique requires a very large sample corpus of 
sample inputs that have been collected autonomously

• We envision small-scale crawling of the public internet to collect the 
corpus, for example, HTTP responses can be collected by crawling 
public HTTP servers. 

– I used this technique to discover MS08-045 and MS09-046, both 
very old bugs that had evaded other fuzzers, as well as numerous 
other bugs.

• For our initial implementation, we tested some image decoders using 
a trivial LWP::Simple crawler.

• Using this data, we infer data about the protocol being tested.
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Design

• Example: Internet Explorer Retry With Vulnerability

• While crawling the public internet for HTTP response samples, an IIS 
machines responded with 'HTTP/1.1 449 Retry With', which included 
the HTTP Response Header 'MS-Echo-Reply'.

• At the time, searching for any related documentation drew a blank – 
this feature was essentially undocumented, but when included in our 
corpus, the coverage score for internet explorer increased several 
points.

• Trivial mutation of the input revealed an easily exploitable condition, 
when the response was truncated an object was free()d, but a 
reference remained to it from another object.

– Causing JavaScript to request a similar sized buffer assigned the 
freed buffer to me, where I was able to easily redirect execution.
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Design

Internet Explorer Retry With Vulnerability

• This bug was very old, and had existed since at least IE4-IE8.

• I believe this bug had managed to evade other fuzzers, simply 
because they were not seeded with the data required to find it, despite 
lots of effort to fuzz HTTP.

– Our technique allowed us to explore this functionality and identify 
when we were hitting new, potentially broken, code.

– I've discovered multiple similar vulnerabilties in a number of other 
products, including other Microsoft products, but these remain 
unpatched.
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Design

Libpng invalid free vulnerability

• Another nice vulnerability that we found using this technique was 
CVE-2009-0040, libpng prepared an array of pointers to row data like 
this:

for (row = 0; row < info_ptr->height; row++)

info_ptr->row_pointers[row] = png_malloc();

• If an allocation error occurred (for example, insane image 
dimensions), libpng would attempt to clean up and free all of the row 
pointers, even the uninitialised ones.

• The uninitialised data in row_pointers[] was easily controllable by 
decoding a “primer” image, essentially resulting in free(arbitrary).

• Rather than exploiting directly and attacking the system allocator 
(hard), I was able to free another interesting object unexpectedly, and 
then get it assigned to a javascript allocation I controlled.



Google Confidential 17

Design

Corpus Distillation

• We found that simple set cover minimisation can be used to great 
effect exploring and testing the software attack surface.

• Rather than treating program inputs as a stream of octets (Miller et al-
style fuzzing), or simple data blocks (block based fuzzing), we treat 
them as a set of elements from the finite universe of source code lines 
from the program to be tested.

• We now simply calculate the cardinality of our large corpus, and then 
attempt to find the smallest sub-collection such that the union of those 
inputs has the same cardinality.

• Obviously set-cover minimisation is NP-hard, however a simple non-
optimal approximation is trivial.
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Design

Corpus Distillation

• Our initial results with Corpus distillation were encouraging, we were 
able to break some high profile software and find very old bugs that 
others had missed.

• Just simple mutation of our distilled corpus would break most software 
(or a corpus distilled using coverage data for program A would break 
similar program B without modification!)

• Using a combination of corpus distillation and flayer produced yet 
more breakage, we were able to rapidly cut the time required to use 
flayer effectively and avoid the overhead of constraint solving.
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Corpus Distillation

Corpus Distillation

• Interestingly, this proved to be a good way of validating that all of the 
edge cases handled in implementation A, were also handled in 
implementation B.

• In multiple cases we were able to break a new implementation by 
trying testcases that hit specific checks in one implementation, if the 
authors of another implementation had not considered this case, it 
would often crash.

• I have dozens of cases where building a corpus with an open source 
implementation would crash every proprietary implementation I could 
find.

• Unfortunately most of these bugs are still unpatched.
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Design

Deep Coverage Analysis

• Despite good results from Corpus Distillation, we felt that basic block 
based coverage was holding us back.

• It's clear that certain constructs, such as CRCs, are unlikely to be 
maintained without some form of protocol definition the fuzzer can 
refer to.

• We solved this problem by introducing sub-instruction profiling.

– Existing coverage-driven fuzzers at best use basic blocks for 
determining code coverage, but we felt this was still too high level.

– Of course coverage data derived from basic blocks is equivalent to 
instruction level coverage, but it's easy to imagine how a large 
amount of logic can be encoded in a single instruction.
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Examples

#include <string.h>

int main(int argc, char **argv)
{

return strcmp(argv[1], � foobar� );
}

...
F3 A6 REPZ CMPS BYTE PTR DS:[ESI], BYTE PTR ES:[EDI]
...
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Examples

strcmp, memcmp, and similar

• Any reasonable compiler will inline the string comparison to a single 
machine instruction, a rep cmps.

• This can be optimised into an entirely branch-less subroutine, and 
thus coverage information is highly misleading.

– Basic block based coverage can hide large amounts of program 
logic

– Feedback driven fuzzers that uses basic block execution counts are 
unlikely to ever proceed past checks like this, unless this constant 
happens to be pre-populated as part of a block definition or protocol 
grammar.
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Examples

#include <stdlib.h>

int main(int argc, char **argv)
{

return atoi(argv[1]) == 0xabcdef;
}

...
3D EF CD AB 00 CMP EAX, 0xABCDEF
0F 94 C0 SETE AL
...
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Examples

Arithemetic, Immediates and Constants

• Even simple arithmetic operations may be hiding significant program 
logic.

• Unless a constant like this is pre-seeded, random mutation is unlikely 
to discover it.
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Solution

Sub-Instruction Profiling

• We solve this problem using sub-instruction profiling, essentially using 
DBI to instrument common code patterns that may shield hidden logic.

– This is relatively straightforward using PIN, which tells us whenever 
a new basic block is encountered so that we can examine it and 
install instrumentation data.

– We insert calls before and after the interesting code points, and 
then calculate a new “deep” coverage score.

– Consider the first example, we can improve feedback by installing 
instrumentation that complements coverage by examining the value 
of ecx before and after the rep cmps.

– The 32bit immediate comparison can be broken into 32 bit-sized 
chunks, and we can assign a score based on “depth” reached.
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Deep Cover

Reconstruction literals, immediates, etc

• This technique has proven to be extremely useful. An interesting case 
study involved attempts at attacking various PNG decoders.

• In several cases, we've found bugs that required a chunk to have a 
correct crc32 present just using simple mutation.

– We break the crc32 comparison into bit-sized manageable chunks.

• Originally we used the inverted hamming distance between 
source and destination as the coverage score, but this proved 
unexpectedly susceptible to local minima.

• Now we simply count the correct bits starting from the MSB until 
an incorrect bit is encountered.

• The feedback received from this instrumented comparison is now 
enough to allow the fuzzer to reconstruct the correct crc with zero 
knowledge of the algorithm.
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Sub instruction Profiling

Sub instruction Profiling vs. Constraint Solving

• Perhaps the classical solution to similar problems is constraint solving 
(SAGE, fuzzgrind, others).

• We've found that sub instruction profiling combined with simple 
stochastic hill-climbing has proven to be a more practical solution that 
has performed equally well.

• We've experimented with both, our work on Flayer and other tools 
have allowed us to evaluate different techniques.

• While constraint solving does appear to be a more elegant solution, 
practical experience suggests that it is performs poorly and produces 
no-better results.
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Deep Cover

Making Programs Dumber

• “Deep Cover” is our implementation of sub instruction profiling.

• Currently we use PIN, but now that DynamoRIO has been made 
available under a more favourable license, we have begun to port it to 
this new framework.

• We've been able to use this technique to make large amounts of 
complex logic essentially simpler, more fuzz-friendly chunks, which 
we've been able to break using surprisingly simple mutation.

• We've been able to eliminate constraint solving, which we consider a 
major bottleneck in lots of current research.
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Flayer

Taking this idea to the extreme

• Flayer is a fuzz framework based on Valgrind/VEX.

• Flayer takes the idea of program simplification to the extreme, 
essentially stripping away protocol structure and complexity.

– By extending the “definedness” check implemented by memcheck, 
we taint all attacker controlled input and trace its flow throughout the 
target application.

– Flayer takes your regular application that parses some complex 
data, and makes /dev/urandom an effective fuzzer, regardless of 
what protocol or format your program reads.

• We published this idea at USENIX WOOT, and others have since 
extended the idea. We really believe in this idea, and think there is 
some exciting potential here.
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Making Programs Dumber

Flayer

• Flayer taints user input and traces it's flow through an application with 
bit precision, flayer monitors when a tainted condition is tested, and 
controls whether the path is taken or not.

– Thus, flayer knows when an application makes a decision based on 
something an attacker provides.

– Using some simple heuristics we can decide if an attacker could 
have taken this codepath, and force it to be explored regardless of 
whether the input would have caused it.

• We've used this technique to uncover major vulnerabilities in lots of 
software, such as openssl, openssh, libtiff, libpng, etc. Flayer strip's 
away the underlying protocol structure, making 'sshd < /dev/urandom' 
an effective fuzzer.
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