
Tavis Ormandy
Google, Inc.

Google Confidential 2

Making Software Dumberer

Tavis Ormandy
Google, Inc.

Google Confidential 3

Introduction

Making Software Dumber

• This talk will discuss some of the ideas we've explored while thinking
about trying to make more generic fuzzers.

• While a lot of fuzz related research has focussed on making fuzzing
tools more aware of the protocol their attacking, some of us have felt
that this may be the wrong direction

– We want to make very generic fuzz testing tools that can apply to
lots of software.

– We've been calling this “Making software dumber”, as opposed to
making fuzzers smarter.

Google Confidential 4

Introduction

Fuzz Testing

• In it's purest form, entirely blind to context and underlying protocol.

• Historically, this approach has proven to be remarkably successful.

• However, it is self-evident that this approach remains limited to
software expecting only minimally structured input.

• Applying the core principles of fuzz testing to a broader range of
software and improving it's overall efficacy continues to be an active
research topic.

Google Confidential 5

Introduction

Block Based Fuzzing

• Perhaps the earliest attempt at introducing structure to fuzz testing.

– Pre-define the data structures (i.e. blocks) involved in the protocol
being tested.

– The blocks are then assembled and mutated in such a way that the
basic structure is maintained, while the contents and stream are
randomly modified.

• The most notable example, of course, was SPIKE.

• SPIKE et al. began to vastly extend the reach of fuzz testing to
structured protocols and formats (HTTP, RPCs, XML, etc).

Google Confidential 6

Introduction

Model Inference Assisted Fuzzing

• An extension to block based fuzzing, Model Inference Assisted
Fuzzing Introduces protocol awareness in order to extend the reach of
fuzz testing to vastly more complex programs

– Predefined protocol grammar serves as a complete specification for
the protocol (or format) to be tested.

– The fuzzer is then able to generate tests that deviate subtly from
those specifications

• Model inference assisted fuzzers continue to expose serious
implementation flaws.

• Perhaps the most notable example is PROTOS.

Google Confidential 7

Introduction

Model Inference Assisted Fuzzing

• Model inference assisted fuzzing is obviously a considerable leap
forward from naïve protocol-blind fuzzing.

• However, reliance on accurate protocol specifications presents a
number of problems

– Expensive setup cost required to construct the requisite grammar.
Some specifications provide usable grammar in Backus-Naur or
similar form, but this is an exception rather than a rule.

– Only possible to model specifications documented by the vendor,
potentially ignoring any undocumented or proprietary extensions.

– High likelihood of ignoring vast amounts of attack surface, or testing
large amounts of unimplemented specifications (consider testing a
http daemon that doesn't support DAV based purely on the
specification).

Google Confidential 8

Introduction

Possible Solution: Feedback Driven Fuzzing?

• Feedback driven fuzzing attempts to learn how to explore a program
dynamically (typically) using code coverage and sample inputs.

– Generally either use compiler instrumentation (such as
-finstrument-functions in gcc) or DBI.

– The three major DBI frameworks are PIN from Intel, DynamoRIO
from Determina/VMware, and VEX/Valgrind from Julian Seward et
al, But others have used home-brew techniques (generally IDA
+patching basic block boundaries with software breakpoints).

• Bunny-the-fuzzer (lcamtuf) and EFS (DeMott) are two notable
examples.

• Feedback driven fuzzing has proven to be effective, and continues to
be an exciting research area.

Google Confidential 9

Introduction

Alternative Inference Sources

• We're convinced model inference assisted fuzzing is useful, but we
wanted comparative results without the expensive (in terms of effort)
initial investment.

• We developed an alternative solution that can be almost entirely
automated with minimal human interaction.

– We have been able to apply this to explore proprietary, and
undocumented software functionality

– Identify edge cases that require special attention, and automatically
generate (surprisingly) good quality regression test suites.

– We successfully used this method to find multiple real life security
problems in a large number of unrelated products.

Google Confidential 10

Design

Feedback Driven Fuzzing

• So, Inspired by ideas such as Protos, EFS, Bunny, SAGE, and others,
We wanted to build code coverage feedback into our fuzzing.

• Initially we simply hooked gcc's built in gcov instrumentation support
which modifies every basic block to increment a counter we can
monitor. It's not a supported interface, but suited our needs well.

• This worked, but requires us to have the source for every application
we want to test.

• Using DBI, we can apply the same logic to any application but do not
require the source code.

• Additionally as the major DBI frameworks are cross platform, we get
Windows support for free.

Google Confidential 11

Design

Corpus Distillation

• Inspired by model inference assisted fuzzing, corpus distillation
eliminates the requirement for protocol grammar via automated
observation of the software to be tested.

• We realised that the input to any program could be considered a set
of elements from the finite universe of source code lines (or basic
execution blocks) that form the program you're testing.

• In this manner, the input X is the subset of lines from program P that
have been executed one or more times for P(X).

• SAGE From Microsoft Research had similar goals, but a vastly
different approach (and more complete, but we address this later).

Google Confidential 12

Design

10 bool decode(FILE *infile)
11 {
12 png_structp png_ptr;
13 png_infop info_ptr;
14 png_ptr = png_create_read
15 info_ptr = png_create_inf
16 png_set_crc_action(png_pt
17 if (setjmp(png_jmpbuf(png
18 png_destroy_read_stru
19 fclose(infile);
20 return false;
21 }
22 png_init_io(png_ptr, info
23 png_read_png(png_ptr, inf
24 png_destroy_read_struct(&
25 fclose(infile);
26 return true;

• If executing this input results in these
source code lines being executed, we
consider this input the set of these lines, and
ignore it's contents.

• Now, simple set theory allows us to

manipulate our corpus in interesting ways.

Google Confidential 13

Design

Corpus Distillation

• Application of our technique requires a very large sample corpus of
sample inputs that have been collected autonomously

• We envision small-scale crawling of the public internet to collect the
corpus, for example, HTTP responses can be collected by crawling
public HTTP servers.

– I used this technique to discover MS08-045 and MS09-046, both
very old bugs that had evaded other fuzzers, as well as numerous
other bugs.

• For our initial implementation, we tested some image decoders using
a trivial LWP::Simple crawler.

• Using this data, we infer data about the protocol being tested.

Google Confidential 14

Design

• Example: Internet Explorer Retry With Vulnerability

• While crawling the public internet for HTTP response samples, an IIS
machines responded with 'HTTP/1.1 449 Retry With', which included
the HTTP Response Header 'MS-Echo-Reply'.

• At the time, searching for any related documentation drew a blank –
this feature was essentially undocumented, but when included in our
corpus, the coverage score for internet explorer increased several
points.

• Trivial mutation of the input revealed an easily exploitable condition,
when the response was truncated an object was free()d, but a
reference remained to it from another object.

– Causing JavaScript to request a similar sized buffer assigned the
freed buffer to me, where I was able to easily redirect execution.

Google Confidential 15

Design

Internet Explorer Retry With Vulnerability

• This bug was very old, and had existed since at least IE4-IE8.

• I believe this bug had managed to evade other fuzzers, simply
because they were not seeded with the data required to find it, despite
lots of effort to fuzz HTTP.

– Our technique allowed us to explore this functionality and identify
when we were hitting new, potentially broken, code.

– I've discovered multiple similar vulnerabilties in a number of other
products, including other Microsoft products, but these remain
unpatched.

Google Confidential 16

Design

Libpng invalid free vulnerability

• Another nice vulnerability that we found using this technique was
CVE-2009-0040, libpng prepared an array of pointers to row data like
this:

for (row = 0; row < info_ptr->height; row++)

info_ptr->row_pointers[row] = png_malloc();

• If an allocation error occurred (for example, insane image
dimensions), libpng would attempt to clean up and free all of the row
pointers, even the uninitialised ones.

• The uninitialised data in row_pointers[] was easily controllable by
decoding a “primer” image, essentially resulting in free(arbitrary).

• Rather than exploiting directly and attacking the system allocator
(hard), I was able to free another interesting object unexpectedly, and
then get it assigned to a javascript allocation I controlled.

Google Confidential 17

Design

Corpus Distillation

• We found that simple set cover minimisation can be used to great
effect exploring and testing the software attack surface.

• Rather than treating program inputs as a stream of octets (Miller et al-
style fuzzing), or simple data blocks (block based fuzzing), we treat
them as a set of elements from the finite universe of source code lines
from the program to be tested.

• We now simply calculate the cardinality of our large corpus, and then
attempt to find the smallest sub-collection such that the union of those
inputs has the same cardinality.

• Obviously set-cover minimisation is NP-hard, however a simple non-
optimal approximation is trivial.

Google Confidential 18

Design

Corpus Distillation

• Our initial results with Corpus distillation were encouraging, we were
able to break some high profile software and find very old bugs that
others had missed.

• Just simple mutation of our distilled corpus would break most software
(or a corpus distilled using coverage data for program A would break
similar program B without modification!)

• Using a combination of corpus distillation and flayer produced yet
more breakage, we were able to rapidly cut the time required to use
flayer effectively and avoid the overhead of constraint solving.

Google Confidential 19

Corpus Distillation

Corpus Distillation

• Interestingly, this proved to be a good way of validating that all of the
edge cases handled in implementation A, were also handled in
implementation B.

• In multiple cases we were able to break a new implementation by
trying testcases that hit specific checks in one implementation, if the
authors of another implementation had not considered this case, it
would often crash.

• I have dozens of cases where building a corpus with an open source
implementation would crash every proprietary implementation I could
find.

• Unfortunately most of these bugs are still unpatched.

Google Confidential 20

Design

Deep Coverage Analysis

• Despite good results from Corpus Distillation, we felt that basic block
based coverage was holding us back.

• It's clear that certain constructs, such as CRCs, are unlikely to be
maintained without some form of protocol definition the fuzzer can
refer to.

• We solved this problem by introducing sub-instruction profiling.

– Existing coverage-driven fuzzers at best use basic blocks for
determining code coverage, but we felt this was still too high level.

– Of course coverage data derived from basic blocks is equivalent to
instruction level coverage, but it's easy to imagine how a large
amount of logic can be encoded in a single instruction.

Google Confidential 21

Examples

#include <string.h>

int main(int argc, char **argv)
{

return strcmp(argv[1], � foobar�);
}

...
F3 A6 REPZ CMPS BYTE PTR DS:[ESI], BYTE PTR ES:[EDI]
...

Google Confidential 22

Examples

strcmp, memcmp, and similar

• Any reasonable compiler will inline the string comparison to a single
machine instruction, a rep cmps.

• This can be optimised into an entirely branch-less subroutine, and
thus coverage information is highly misleading.

– Basic block based coverage can hide large amounts of program
logic

– Feedback driven fuzzers that uses basic block execution counts are
unlikely to ever proceed past checks like this, unless this constant
happens to be pre-populated as part of a block definition or protocol
grammar.

Google Confidential 23

Examples

#include <stdlib.h>

int main(int argc, char **argv)
{

return atoi(argv[1]) == 0xabcdef;
}

...
3D EF CD AB 00 CMP EAX, 0xABCDEF
0F 94 C0 SETE AL
...

Google Confidential 24

Examples

Arithemetic, Immediates and Constants

• Even simple arithmetic operations may be hiding significant program
logic.

• Unless a constant like this is pre-seeded, random mutation is unlikely
to discover it.

Google Confidential 25

Solution

Sub-Instruction Profiling

• We solve this problem using sub-instruction profiling, essentially using
DBI to instrument common code patterns that may shield hidden logic.

– This is relatively straightforward using PIN, which tells us whenever
a new basic block is encountered so that we can examine it and
install instrumentation data.

– We insert calls before and after the interesting code points, and
then calculate a new “deep” coverage score.

– Consider the first example, we can improve feedback by installing
instrumentation that complements coverage by examining the value
of ecx before and after the rep cmps.

– The 32bit immediate comparison can be broken into 32 bit-sized
chunks, and we can assign a score based on “depth” reached.

Google Confidential 26

Deep Cover

Reconstruction literals, immediates, etc

• This technique has proven to be extremely useful. An interesting case
study involved attempts at attacking various PNG decoders.

• In several cases, we've found bugs that required a chunk to have a
correct crc32 present just using simple mutation.

– We break the crc32 comparison into bit-sized manageable chunks.

• Originally we used the inverted hamming distance between
source and destination as the coverage score, but this proved
unexpectedly susceptible to local minima.

• Now we simply count the correct bits starting from the MSB until
an incorrect bit is encountered.

• The feedback received from this instrumented comparison is now
enough to allow the fuzzer to reconstruct the correct crc with zero
knowledge of the algorithm.

Google Confidential 27

Sub instruction Profiling

Sub instruction Profiling vs. Constraint Solving

• Perhaps the classical solution to similar problems is constraint solving
(SAGE, fuzzgrind, others).

• We've found that sub instruction profiling combined with simple
stochastic hill-climbing has proven to be a more practical solution that
has performed equally well.

• We've experimented with both, our work on Flayer and other tools
have allowed us to evaluate different techniques.

• While constraint solving does appear to be a more elegant solution,
practical experience suggests that it is performs poorly and produces
no-better results.

Google Confidential 28

Deep Cover

Making Programs Dumber

• “Deep Cover” is our implementation of sub instruction profiling.

• Currently we use PIN, but now that DynamoRIO has been made
available under a more favourable license, we have begun to port it to
this new framework.

• We've been able to use this technique to make large amounts of
complex logic essentially simpler, more fuzz-friendly chunks, which
we've been able to break using surprisingly simple mutation.

• We've been able to eliminate constraint solving, which we consider a
major bottleneck in lots of current research.

Google Confidential 29

Flayer

Taking this idea to the extreme

• Flayer is a fuzz framework based on Valgrind/VEX.

• Flayer takes the idea of program simplification to the extreme,
essentially stripping away protocol structure and complexity.

– By extending the “definedness” check implemented by memcheck,
we taint all attacker controlled input and trace its flow throughout the
target application.

– Flayer takes your regular application that parses some complex
data, and makes /dev/urandom an effective fuzzer, regardless of
what protocol or format your program reads.

• We published this idea at USENIX WOOT, and others have since
extended the idea. We really believe in this idea, and think there is
some exciting potential here.

Google Confidential 30

Making Programs Dumber

Flayer

• Flayer taints user input and traces it's flow through an application with
bit precision, flayer monitors when a tainted condition is tested, and
controls whether the path is taken or not.

– Thus, flayer knows when an application makes a decision based on
something an attacker provides.

– Using some simple heuristics we can decide if an attacker could
have taken this codepath, and force it to be explored regardless of
whether the input would have caused it.

• We've used this technique to uncover major vulnerabilities in lots of
software, such as openssl, openssh, libtiff, libpng, etc. Flayer strip's
away the underlying protocol structure, making 'sshd < /dev/urandom'
an effective fuzzer.

Tavis Ormandy
Google, Inc.
taviso@google.com

mailto:taviso@google.com

