
3 things that Rowhammer 
taught me
… and their implications for future security research



Who am I?

● Reverse engineer since 1997, vuln development since 1999
● Started reverse-engineering company “zynamics” in 2004
● BinDiff, BinNavi, VxClass, many other contributions
● Acquired by Google in 2011
● Worked on defending Google & large-scale malware analysis until 

2015
● Mathematician by trade, hacker by mentality (like to work on 

boundary between theory and practice)

● Currently on a one-year sabbatical to travel, read, and surf



What is 
Rowhammer?



The Rowhammer DRAM bug

Repeated row activations can cause bit flips in adjacent rows

● A fault in many DRAM (DDR3) modules, from 2010 onwards
● Bypasses memory protection:  One process can affect others
● All three big DRAM manufacturers shipped memory with this 

problem
○ A whole generation of machines
○ Particularly bad on Laptops (no ECC)



Simplified illustration of Rowhammer issue (hypothesized)

Imagine DRAM as grid of wires, with bits of information stored at the “crossings” as charges



Simplified illustration of Rowhammer issue (hypothesized)

Apply current to a “row” so that the values can be read out 



Simplified illustration of Rowhammer issue (hypothesized)

Apply current to a “row” so that the values can be read out 



Simplified illustration of Rowhammer issue (hypothesized)

Due to DRAM density, a tiny bit of charge leaks to neighboring “rows”



Simplified illustration of Rowhammer issue (hypothesized)

This leads to tiny bits of charge leaking out of the neighboring cells



Simplified illustration of Rowhammer issue (hypothesized)

Repeat often enough, and the neighboring bits can “flip”



Simplified illustration of Rowhammer issue (hypothesized)

Repeat often enough, and the neighboring bits can “flip”



Exploiting Rowhammer

Rowhammer was deemed non-exploitable and only a reliability issue

● We found a way to abuse it generically for local privilege escalation 
on x86

● Idea works on all major OSes (Windows / Linux / OSX)
● We implemented only the Linux variant

(“We” == Mark Seaborn and me)



Exploiting Rowhammer: How to exploit a random bit flip

How can a random bitflip be exploited?
● Page tables are 4k pages containing arrays of 512 “PTE”s (page 

table entries 
● Each PTE is 64 bit and looks like this:
●

● Permission bit - 2% chance
● Physical page base address (20 bits) - 31% chance



Exploiting Rowhammer: How to exploit a random bit flip

Basic strategy:  Spray most of physical memory with page tables

● mmap() the same file repeatedly (and writeable)
● e.g. To fill 4GB of physical memory, mmap() 2048GB of virtual 

address space
○ Works because we have a 64-bit virtual address space
○ Works because major OS have no bounds on page tables

Helps ensure two things:
● That a bit-flipped physical page number will point to a page table
● That a random bit flip will hit a PTE



Exploiting Rowhammer: How to exploit a random bit flip

Begin “hammering” memory

Periodically check for bit flip (indirectly):
● Scan virtual address space for a page that now points elsewhere
● If found, does the page look like a page table?

○ If so, deduce which address it controls
■ Modify it
■ Scan virtual address space for a second page that now 

points elsewhere
Can be used to exploit completely random bit flips (e.g. from cosmic 
rays)



Lessons:



One bitflip is enough 
… at least when you don’t need 100% reliability



One bitflip is enough

2003 paper: “Using Memory Errors to Attack a Virtual Machine”

Connected Heat lamp to RAM, 
induced bit flips

2015 Rowhammer.

Common thread: The most 
random and obscure issues 
can be exploited.

One bit is enough.



Deterministic computing is a 
good abstraction - but 
PREAM
… “physics rules everything around me”



Deterministic computing is “just” an abstraction

● We think about computers as deterministic machines
● In reality, they are “probabilistically deterministic”

○ Deterministic most of the time
○ Probability of non-determinism in normal operation is made 

vanishingly low (“reliability”)

● What about the probability of non-determinism in worst-case 
operation?
○ Hardware is not engineered that way - probability of failure 

much higher



Deterministic computing is “just” an abstraction

● Example: Flash wear leveling

● Example: Speedpath analysis and yield maximization in CPU 
design

● Hardware vendors are incentivized to sell chips “just at the border 
of working”

● Bigger safety margins mean drastically reduced profit margins



Deterministic computing is “just” an abstraction: Cloud

● Cloud computing changes risk calculous

● Even if only 1 in 5000 CPUs can be made to misbehave, Cloud 
providers are at risk

● Attackers can rent CPUs until they get lucky



“Impenetrable defense” is not 
a good concept ...
… because the chip at hand may not implement the spec all the time



“Impenetrable defense” is not a good concept

● Realizing that computers are only average-case deterministic 
means that “secure enclaves” may be a doomed concept

● A secure enclave (even with formally verified software) is verified 
against specified semantics of a chip

● Your particular chip may only honor those semantics 99.999% of 
the time

● The 0.001 may be enough for the attacker



“Impenetrable defense” is not a good concept

● Trend in recent years has been toward more opaque blocks in 
computers

● Intel Management Engine, Trustzone, Intel SGX etc.

● Trending concept is “hard, trusted, inviolable small cores” that are 
completely opaque and non-inspectable

● Once an attacker manages to get in, there is no way to tell, and no 
way to get him out



Implications?
The three lessons from Rowhammer imply three interesting areas of research



Implications for fundamental security research

● The three lessons give importance to (at least) three exciting topics 
for research - one each in:

○ Theoretical computer science

○ Borders between Electrical engineering, Statistics, Physics

○ IT Systems Engineering (Hardware, Software, Ecosystems)



A proper theory of 
exploitation

Theoretical Computer Science



A proper theory of exploitation

● Theoretical understanding of exploitation is weak
● Misjudgements happen even by seasoned professionals (“a 

random bit flip will not be exploitable”)

● No good theoretical framework exists to analyze
○ ... what issues are “exploitable”
○ … what issues are “not exploitable”
○ … where the boundary between them lies
○ … what facilitates exploitability

● Result: Misjudgements, bogus “mitigations”, etc.



A proper theory of exploitation: Suggestion

● Assume a tiny toy CPU
○ Finite array of memory cells, a few registers
○ PEEK, POKE, ADD, Jcc, RECV, SEND instructions
○ Read/write memory, add values, recv value, send value
○ Finite (but large) sequence of attacker-provided inputs

● Programmer “emulates” a finite state machine on this CPU - with a 
formally describable set of valid states

● Attacker gets to choose an arbitrary valid state as starting point

● Now assume corruption of a random bit - what is the probability that 
the attacker can now reach any possible state of the toy CPU given 
large enough input sequence?



A proper theory of exploitation: Suggestion

● A proper theory of exploitation would help understand many things:

○ Distinguish useful from not-useful mitigations
○ Help identify at what level of complexity of the emulated finite-

state machine single-bit corruptions become exploitable
○ Put “exploitation” on sound footing in academic circles, and 

bring it out of obscurity / “magic” territory

I hope to eventually get around to working on this



Worst-case analysis of chips, 
wear-and-tear, “achieving 
nondeterminism”

Electrical Engineering, Statistics, Physics



Speed binning, worst-case paths, malicious input

● With cloud computing, virtualization, sandboxing and ubiquitous 
JIT, the instruction stream of the CPU is now malicious input

● CPUs are “speed binned” at end of production cycle
● IC manufacturers will optimize for maximum yield without “random” 

failures (speed path testing, crosstalk, leakage)

● What about “malicious inputs” (input code designed to cause 
pessimal behavior in the IC) ?



Speed binning, worst-case paths, malicious input

EE community performs research on speed- and voltage-binning all the 
time - but with reliability focus.
Security Research is needed on ...
● Identifying critical speed paths on silicon, identifying critical areas 

for crosstalk on silicon
● How to identify input that exercises worst-possible paths
● Can the critical path be made more critical by intentionally causing 

transistor degradation? Transistor aging is a thing, and solid-state 
is not always solid.

It may become economical to rent 1000 CPUs for 1 year if I can get 
one of them to degrade enough to compromise the cloud provider.

○ Distinguish useful from not-useful mitigations - if a mitigation 
fails on this simple CPU it will fail on complex CPUs

○ Help identify what level of complexity of the emulated finite-
state machine implies exploitability of single-bit corruptions

○ Put “exploitation” on sound footing in academic circles, and 
bring it out of “the dark agesobscure oddity”

● I hope to eventually get around to working on this



Speed binning, worst-case paths, malicious input

● This looks like an extremely fruitful area of research!
○ IC manufacturers can’t afford to test every chip for very long.
○ Attackers can profit from small fractions of CPUs being faulty - 

even if those faults occur very rarely
○ IC manufacturers can’t be arbitrarily careful (direct impact on 

profitability).

Research will need collaboration between security experts and people 
familiar with VLSI design, process-induced variations in IC production, 
and yield-optimization.
Research may require budget (hardware investigation is expensive)
Would love to investigate this, but need an EE collaborator :-)



Speed binning, worst-case paths, malicious input

Side warning: I expect the IC industry to aggressively lobby against this 
research being performed out in the open.

It is an incredibly competitive and secretive industry that adheres to the 
motto “only the paranoid survive”.

Don’t go there unless you are willing to pick a fight.



Building inspectable (and 
hence defendable) systems

“IT systems engineering” (Hardware, Software, Ecosystem)



Building inspectable (and hence defendable) systems

● The real world has the concept of “ownership” and “possession”
● I may be in possession of a rental car, but the car company has 

“ownership”. 

● IT systems have a third dimension: “Control”
● I can have ownership and possession of an IT system, but I may 

not have control over it

In today’s systems, it is impossible to establish who is in control. 
Hardware enclaves try to prevent loss-of-control, but this cannot be 
100% -- remember PREAM.



Building inspectable (and hence defendable) systems

● If we want defendable systems, we need to build systems where it 
is possible for the person with ownership and possession to 
establish control.

● This implies:
○ Need to engineer systems to provide non-updateable and 

tamper-evident hardware paths to calculate & display 
checksums over code

○ Need to engineer systems so that every place that may contain 
code can be inspected

○ Need to engineer & build a public ledger infrastructure (similar 
to Certificate Transparency, but with working Gossip protocols) 
for signed code



Building inspectable (and hence defendable) systems

● The current approach of allowing (and even furthering) opacity 
makes our problems worse, not better

● In a world where all signing keys can be either stolen or coerced, 
any code signature scheme without publicly inspectable ledger 
needs to be rejected

● Possibility must exist to determine origin of all code within a 
machine



Building inspectable (and hence defendable) systems

● If you can’t establish who is in control of a machine, all security 
discussions devolve into scholasticism



Summary :-)



Summary :-)

● Rowhammer is an interesting issue, but it is the implications that 
are most interesting

● Computer security is full of extremely hard and extremely 
interesting questions

● Collaboration across disciplines (EE, Theoretical CS, product 
design) will be crucial

● If you find any of these topics interesting, please contact me at 
thomas.dullien (at) gmail.com

● I am particularly happy about any information from people with 
EE/VLSI/Chip-design/yield-optimization background 



Questions?



Appendix: Illustration of 
Rowhammer PTE attack



...

Virtual Address
Space

Physical
Memory



...

Virtual Address
Space

Physical
Memory

What happens when we map a file with read-write 
permissions?



...

Virtual Address
Space

Physical
Memory

What happens when we map a file with read-write 
permissions? Indirection via page tables.



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.

We can fill physical memory with PTEs.



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.

We can fill physical memory with PTEs. 

Each of them points to pages in the same physical 
file mapping.



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.

We can fill physical memory with PTEs. 

Each of them points to pages in the same physical 
file mapping.

If a bit in the right place in the PTE flips ...



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.

We can fill physical memory with PTEs. 

Each of them points to pages in the same physical 
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to 
a wrong physical page - with RW access.



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.

We can fill physical memory with PTEs. 

Each of them points to pages in the same physical 
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to 
a wrong physical page - with RW access.

Chances are this wrong page contains a page 
table itself.



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.

We can fill physical memory with PTEs. 

Each of them points to pages in the same physical 
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to 
a wrong physical page - with RW access.

Chances are this wrong page contains a page 
table itself.

An attacker that can read / write page tables … 



...

Virtual Address
Space

Physical
Memory

What happens when we repeatedly map a file with 
read-write permissions?

PTEs in physical memory help resolve virtual 
addresses to physical pages.

We can fill physical memory with PTEs. 

Each of them points to pages in the same physical 
file mapping.

If a bit in the right place in the PTE flips …

… the corresponding virtual address now points to 
a wrong physical page - with RW access.

Chances are this wrong page contains a page 
table itself.

An attacker that can read / write page tables can 
use that to map any memory read-write.


